?—

non-compact Cauchy surface, then =xeIt*(y) if Link(X,Y)>0, xeI“(y) if
Link(X,T}<0, and xeM\J(y) if Link(X,Y)=0.

4) In curved space-times, the above results still hold locally in the
sense that given any point x€M x has a causally convex globally hyperbolic
neighbourhood with Cauchy slice R, and for y lying in this set we obtain
exactly the same relationship between linking of skies in the corresponding

space of null geodesics as for Minkowski space.

Thanks to R. Baston and R. Penrose.

R‘°L¢[t LOUD_
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Abstract

A twistor conformal field theory for
four space-time dimensions

A_P Hodges R. Penrose M. A Singer

A definition is proposed for four-dimensional conformal field theory in
which a class of complex 3-manifolds and holomorphic sheaf cohomology
replace the Riemann surfaces and holomorphic functions of two-
dimensional theory. Suggestions are made about the interpretation of
such a theory, in terms of the interaction of fundamental particles, in
relation to the theory of twistor diagrams, and the possibility of
extending it to incorporate gravity.

to appear 1In POysics Letters



Complex paraconformal manifolds—their
differential geometry and twistor theory

T.N. Bailey* M.G. Eastwood
October 7, 1988

Abstract

A complex paraconformal manifold is a pg-dimensional complex
manifold (p,q > 2) whose tangent bundle factors as a tensor prod-
uct of two bundles of ranks p and g. We also assume that we are
given a fixed isomorphism of the highest exterior powers of the two
bundles. Examples of such manifolds include 4 dimensional confor-
mal manifolds (with spin structure) and complexified quaternionic,
quaternionic K&hler and hyperKihler manifolds.

We develop the differential geometry of these structures, which is
formally very similar to that of the special case of four dimensional
conformal structures [30].

The examples have the property that they have a rich twistor
theory, which we discuss in a unified way in the paraconformal cate-
gory. In particular, we consider the ‘non-linear graviton’ construction
(29], and discuss the structure on the twistor space corresponding to
quaternionic Kahler and hyperKahler metrics.

We also define a family of special curves for these structures which
in the 4-dimensional conformal case coincide with the conformal cir-
cles [34,2]. These curves have an intrinsic, naturally defined projec-
tive structure. In the particular case of complexified 4k-dimensional
quaternionic structures, we obtain a distinguished 8k + 1 parame-
ter family of special curves satisfying a third order ODE in local co-
ordinates.

"This work was carried out with support from the Australian Research Council. T.N.B.
would also like to thank the University of Adelaide for hospitality.
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Conformal Circles and Parametrizations of
Curves 1n Conformal Manifolds

T.N. Bailey* M.G. Eastwood
Mathematical Institute Department of Mathematics
University of Oxford University of Adelaide
Oxford, U.K. Adelaide, S. Australia

July 26, 1988

Abstract

We give a simple O.D.E. for the conformal circles on a confor-
mal manifold, which gives the curves together with a family of pre-
ferred parametrizations. These parametrizations endow each confor-
mal circle with a projective structure. The equation splits into two
pieces, one of which gives the conformal circles independent of any
parametrization, and another which can be applied to any curve to
generate explicitly the projective structure which it inherits from the
ambient conformal structure [1].

We discuss briefly the use of conformal circles to give preferred
co-ordinates and metrics in the neighbourhood of a point, and sketch
the relationship with twistor thenrv in the case of dimension four.

*This work was carried out with support from the Australian Research Council. T.N.B.
would like to thank the University of Adelaide for hospitality during this time.
AMS subject classifications. Primary 53A30; Secondary 58G30, 58G35.
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On the Twistor Description of Sourced
Fields

T.N.Bailey
M.A .Singer”
Mathematical Institute, University of Oxford, U.K.

12 October 1988

Abstract

Massless fields with source on an analytic world-line are double-
valued, and it was shown by Bailey [1985] that a large family of
such flelds have a twistor description in terms of relative cohomol-
ogy groups. In this paper it is proved that all right-handed mass-
less fields are obtained in this way, and that if the sheaves O(n - 2)
are quotiented by the polynomials, then the relative cohomology of
the resulting sheaves describes all left-handed sourced massless fields.
The proof for right-handed fields uses techniques developed by Singer
[1987,1988| for applying the Penrose transform to situations in which
the ‘pull-back mechanism’ is non-trivial. For the left-handed fields
it is necessary to use some additional arguments involving the con-
served quantities {e. g. momentum and angular momentum for spin
2) of these fields; it is shown that the conserved quantities are the
obstructions {o a twistor description of left-handed fields in terms of
the cohomolagy of O(n — 2).

Relative cohomology and projective
twistor diagrams

S. A. Huggett*
M. A. Singer!
Mathematical Institute, Oxford OX1 3LB, U. K.

10 October 1988

Abstract

The use of relative cohomology in the investigation of functionals
on tensor products of twistor cohomology groups is considered and
yields a significant reduction in the problem of looking for contours
for the evaluation of (project’ =) twistor diagrams. The method is
applied to some simple twistor diagrams and is used to show that the
standard twistor kernel for the first order massless scalar ¢* vertex
admits a (cohomological) contour for only one of the physical channels.
A new kernel is constructed for the ¢* vertex which admits contours
for all channels.



L

A Hamiltonian Interpretation of Penrose’s Quasi-Local Mass

LJ. Ma:sont

Dept. of Physics and Astronomy,
University of Pittsburgh,
Pittsburgh, PA 15260,

and

New College,
Oxford OX1 3BN,
United Kingdom.

Abstract

A connection is established between Penrose's definitition of quasi-local mass and
the more conventional notions of mass and momentum etc. arising from the
canonical formalism of general relativity (which exist at least asymptotically). It
is shown that the each component of the ‘'angular momentum' twistor can be
thought of as the value of a Hamiltonian which generate motions of regions of
the space-time which tend towards one of a collection of 'quasi-Killing vectors’ on
the bounding 2-surface on which the computations take place. The quasi-Killing
vectors are obtained from solutions of the twistor equation, and essential use is
made of the spinorial version of the gravitational Hamiltonian first empioyed in
Witten's simplified proof of positive energy in general relativity.

These ideas are then used to suggest a variation on Penrose's quasi-local
mass definition using ‘quasi conformal Kiling vectors' rather than quasi-Killing
vectors. This has the advantage that there are only 16 real quantities rather than
the 20 real (10 complex) ones from Penrose‘s original definition.

tEsmée Fairbairn Junior Research Fellow and Andrew Meilon Postdoctoral Fellow supported also in part by

NSF grant no. PHY 80023.4 FULGAT 4T Scuocmasull.
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Insights from Twistor Theory

LJ Masont

University of PittsburghI
Pittsburgh, PA 15260

Abstract

This article discusses how twistor methods may be applied to problems arising
from the canonical quantization of gravity. First of aifl the hypersurface twistor
space construction is briefly reviewed, and a correspondence between (comptex)
initial data sets and a compiex 3-manifold together with two cohomoiogy classes
is described.

Thrée possible applications of the methods are discussed. Firstly, a
polarization condition analagous to that of positive frequency for initial data sets
is presented. Secondly, it is arqued that a canonical quantization procedure based
on the use of the twistorial data would realize Penrose’'s suggestion that one
should quantize gravity in such a way as to ‘fuzz’' out space-time points, leaving
null directions weil defined; the usual procedure smears the metric and therefore
the null directions but leaves the space-time events fixed. Thirdly, it is pointed
out that the gauge group for the twistor data is unrefated to the space-time
diffeomorphism group so that the technical difficulties associated with factoring
out the diffeomorphism group can be avoided.

{Andrew Mellon Fellow and Fulbright Scholar supported in part by NSF grant no Phy 80023.
{Present address, New College, Oxford OX1 38N, UK’ (Esmée Fairbairn Junior Research Fellow).
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Backlund transformations for the anti-self-dual

Yang-Mills equations

L. Mason
New College, Oxford University

England

S. Chakravarty and E.T. Newman
Department of Physics and Astronomy,
University of Pittsburgh,
Pittsburgh,

Pennsylvania 15260

Beginning from any given (local) solution of the GL(n,C) anti-self-dual
Yang-Mills (ASDYM) equations on Minkowski space, a simple technique for
the generation of large classes of solutions (perhaps in some sense all)
is given. The origin of this technique is described in terms of two
versions of the Ward construction. The resulting description of Backlund
transformations is sufficiently simple that it is then possible to
identify the group generated by the collection of all such Backlund
transformations and the space on which it acts in terms of concrete

functions.

in J. Math. Phys. 29 (4) april 1988
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