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Given a Stein neighbourhood U in Fi3. Then, (6) maps first Cech cohomology repre-
sentatives on u~1(U) to global functions on p~!(U) and preserves cohomology classes. In
other words, we have a map

o }{: 106 ~a-2(U) — peO(p=1-g,r—1-g)igl(U).

This involves picking a (suitably nice) Stein cover of p~}(U), and choosing a (smooth)

family of branched contours (one on each fibre over U) compatible with this cover. Roughly,

this means that each double overlap of the cover (restricted to a fibre) contains exactly one

branch. (Branched contours are explained in detail in “Spinors and Spacetime II”). Then,

a splitting process due to Spaling and Ward (See TN 1) is performed to give the result.
All this is just a generalisation of the usual zero rest mass integral procedure.

Anyway, by choosing the U’s to be the n-fold overlaps of a (nice) Stein cover of Fy3, (7)
induces the map

f i H" Y (Fy3, 5 00p,nl-g-2) — H" 1 (F3, puOlp-g-1,r—¢-Dia])

which realizes the middle step of (5).

Many thanks to Roger Penrose and Rob Baston for lots of discussions and suggestions.

Klaus Pulverer
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