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CAUSAL RELATIONS AND LINKING IN TWISTOR SPACE

This is a brief review of some work on the relationship between the
causal separation of points {(mainly in Minkowski space) and the way in
which their corresponding skies in (projective null) twistor space link. To
fix notation, let M be Minkowski space, and let PNl be projective null
twistor space without I, so that PNl is the space of null geodesics of M,
with topology R3®xS2, If x is a point in M, then X#S? is its sky in PNI.

Then let x,yeM, and let S be a Cauchy surface containing y (for
example, the surface of constant t). Given this, PNIasSxSZ, and so PNI\I is
diffeomorphic with (S\{y})xS?, which has the topology (RxS?)xS%, A simple

1 shows that

calculation using the Kunneth sequence
Ho(PNI\Y)sH, (S\{y})®H,(PNI)
Y ¥ 4 & 2z
(where all homology is taken to be with coefficients in Z). Thinking
geometrically, then, if we consider the image of the fundamental class of X
in HZ(PNI\Y), we get a pair of integers, the first of which tells us how
often X wraps round Y; this is used to motivate a definition of linking
number for skies. First, however, the question of the orientation on a sky
must be considered. To any sky in PNI, associate the orientation which
induces the inward pointing normal to I"(x)1S when S is a Cauchy surface
Just to the past of x.

Definition. Let X and Y be the skies of points of M such that XNY=d.
Then Link(X,Y) is defined to be the image of the fundamental class of X in
Ho(PNI\Y)/H,(PNI),

It follows that x and y are timelike separated if and only if
Link(X,Y)#0. In fact, we have

Theorem. Let x,y€éM with skies X,Y<PNI respectively, such that XNY=g.
Then

x € I*¥(y) if Link(X,Y) = %1

X € M\J{y} if Link(X,Y) = O. 1



Given that this version of linking seems to work so well, one is
tempted to try to get the intersection theoretic version? of linking to work;
in this case, one is immediately faced with the problem that the sky of a
point is not the boundary of any surface in PNI, so there is a problem
caused by the topological non-triviality of PNL.  One attempt at
circumventing this problem might be to consider surfaces in PN\Y with
boundary IUX, corresponding to considering the homology of X in PN\Y
relétive to I. This cannot work, though, because these relative homology
groups all vanish,

A slight subtlety involving the way in which the surface approaches X
and I will recover the situation.

Theorem. Let x,y€M such that XNY=g. Then if LcPN is a surface with
boundary XUI such that

1) £ = S2x[0,1]
2) I\I = S2x{0,1)

and 3) Carrying the orientation from X to I along [ gives the same
orientation on I as that induced by completing a Cauchy surface of M and
regardiﬁg PN as the tangent sphere bundle of the résulting s3
then

x€1¥(y) if the intersection number of £ with Y is %1

x€M\J(y) if the intersection number is 0. O

Notes.

1) In dimensions other than 4, most of this carries straight across,
except that for odd dimensions the nice relationship between the sign of
the linking number and the information of which point is to the future of
the other is lost,

2) The skies of M form a maximal family of S2s in PNI with the
transitivity property that Link(X,Y)=Link(Y,Z)=1 & Link(X,Z)=1.

3) If M is a conformally flat globally hyperbolic space-time with a



?—

non-compact Cauchy surface, then =xeIt*(y) if Link(X,Y)>0, xeI“(y) if
Link(X,T}<0, and xeM\J(y) if Link(X,Y)=0.

4) In curved space-times, the above results still hold locally in the
sense that given any point x€M x has a causally convex globally hyperbolic
neighbourhood with Cauchy slice R, and for y lying in this set we obtain
exactly the same relationship between linking of skies in the corresponding

space of null geodesics as for Minkowski space.

Thanks to R. Baston and R. Penrose.

R‘°L¢[t LOUD_
References.
[1] Greenberg and Harper, Algebraic topology: a first course.
{2} Rolfsen, Knots and Links.

Abstract

A twistor conformal field theory for
four space-time dimensions

A_P Hodges R. Penrose M. A Singer

A definition is proposed for four-dimensional conformal field theory in
which a class of complex 3-manifolds and holomorphic sheaf cohomology
replace the Riemann surfaces and holomorphic functions of two-
dimensional theory. Suggestions are made about the interpretation of
such a theory, in terms of the interaction of fundamental particles, in
relation to the theory of twistor diagrams, and the possibility of
extending it to incorporate gravity.

to appear 1In POysics Letters



Connections between amplitudes in string theory
and twistor diagrams

In the proposal [1] for twistor conformal field theory in four
dimensions (CFT4), an amplitude arises in the first instance as associated

with a specific complex manifold X. We then suggest that to obtain a
conformally invariant amplitude there should be a summation of such
amplitudes over (a class of) such complex manifolds. We hope to identify
such conformally invariant amplitudes with the evaluations of twistor
diagrams. Thus we are led to consider the possibility that at least some of
the multiple integrations appearing in twistor diagrams are interpretable
as integrations over manifold-defining parameters.

It is encouraging that the amplitudes calculated for the
tree-diagrams of (bosonic) string theory can be put in the form of
projective spinar integrals, interpretable in just this sense. This is only a
matter of rewriting the calculations as given in Green, Schwarz and Witten,
vol. 1, pp. 38-50, 355-390. As we shall see, a tantalising hint of an analogy
with twistor diagrams then emerges.

The simplest example is that of integrating over the sheets formed
by four open strings with spin 0, labelled by [26-dimensionall] momenta
kl [ k2 ] k3 ¥ k4 -

kz_\/ k3

1

(kl+k2+k3+k4-0)

The argument is that first, such a sheet may be mapped conformally to a
disc with four points on the boundary removed (equivalently, the
upper-half-plane with four real points removed). Thus summation over all
sirings reduces 1o summing over conformally inequivalent discs
(half-planes). This in turn reduces 1o a single integral over the cross-ratio
of the four removed points, the range of integration being determined by
the ordering (1234), well-defined up to cyclic permutation. This integral
then produces the Veneziano beta-function appropriate to that ordering.
Explicitly, using the upper-haif-plane formulation, G. S. & W. write down

j&z‘dzlizj da, ¢xp [~k ke Lod\?‘-?,_)) 2 (—l, %y Lujly‘-zlo
ey (’kl'k‘r b5l21'24\) ety (/kz, ky log ]zz,zj;)
u/]’l (—'k!,k& L“ﬁlzl'zfl) O (/lc\.l,k% L'd IZJ, 2«‘j>



where the integrand (i.e. the amplitude associated with a specific choice of
2y,2;,23, ) is deduced from an action principle. They arrive at an

integral over the cross-ratio by imposing 2, = 0,23 = 1,Z4= oo, (thought of
as "gauge-fixing”) so that the integral reduces to

| —k,-
[ 4zlz] -2,

—ky. kg

They have a argument to show that this is SL2C invariant iff the external
momenta meet the “tachyon” conditions

-k2 = Ky ky+ Ky ky+ k. kg = 2 (in units of the Planck mass)
and similarly for k,, ks, k.

Writing s = (k,;+k;)2 1= (Kk,+k4)? u= (k,+ky)?
these imply s+t+u - -8, Kk, k, =(3+4)/2 elc

However this invariance is (to me) more transparent and symmetrically
expressed when the amplitude is written in terms of projective spinors
The Green function leg| z; - 7, | then appears as

log \ 2,-22

2« 2.2

where the spinor « corresponds to the point at infinity. SL2C invariance,
ie. independence of ¢ |, is then obviously equivalent to the “tachyon”
mass condition. If this is met, the integral then becomes

- - -C
D2, [(z\.zb)(zs.z‘,)] k[(z,.z*)(zz'-zl)] "[(z,.za)(zz,z,f)]

wherea= k .k, =2+s/2; b=k ky=2+1/2; c= k, .k, =2+u/2,
50 at+b+c=2
and where the integration can be “freed” from the real line.

Such an integrand is familiar in spinor integral calculus. Note the
symmetric contour integral formula
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CtAM L) r/c)
{a+b+c=2)

where C is the compact contour QQ in CP!

C is equivalent to a Pochhammer contour winding round a cut between two
branch points, and so this compact contour integral formula implies the
non-compactl "beta-function” integral formula

x & §>(«.)>"‘(7<.,q"'z«.v>’° Dr

» - - < —_—
'S Dx (7"» ‘(“‘r‘) (‘K'Y> - SiAA  ARRL
A

¢~ b a-
L §Dx(w))‘&(“-w)‘v[ﬁvyt = Cp) (2v) (V)
(’L(L) 2

c

-0 T8 () 6D vy
[(1—a-v)

If we integrate oul z, in this way (following G.S. and W.) we are left with

W) Dz, D2, Dy (_2\.23)"(73.’14(—)”/2\‘-2()pl
(le-a-t)

To G. S. and W. this remaining integral is a divergent integral which
represents the volume of SL2R, and is to be divided out. As an alternative
way of expressing this idea, we may change the contour to a compact
S2 x S! and obtain the required finite result. Putting these ideas together,
we may claim that the compact spinar contour inlegral

k. A=k —k,-ly
éwz'”'bz‘r (22002, 2 Tt [lz.-z~)1%.29] . [12..?3)121.1.)]
————— e ———_’_-——________

S wlk, ky) N STy

corresponds to an invariantly defined summation over strings, yielding the
Veneziano amplitude

Kls, b)) = Ti—t-49 (l=t-5¢)
(e A T
f(~2-4 $75K)



We might express this spinor integral by a “spinor diagram”, so that

1\‘ L
\ \(\ ’-/_’————; k

Here the solid lines represent factors  [(2,.2,)(2,.2)] k). k2 Lz, 24) (2,.2,)]
— = y -
Saw k. k) sia Tk, )

\

—,.k , .
the dashed line a factor [(7.‘23)(21.’2,,2] % (‘a period of the solid line)

and compact contour integration over the z, is implied.

By permuting the external states we have likewise

s K, . k‘\/ ¥ k, kg
/< Yo \/ - N
2 >/ e Pﬂ 'y ) Z %\'4 "X B

ket k\

The significance of the ordering of the external states is seen in its
connection with internal symmetry. Suppose the external states now also
carry elements A; of U(n) as internal symmetry indices (such an element
can be thought of as describing a quark-antiquark pair in the hadron
model for which the original bosonic string theory was developed). Then
according to string theory the amplitude for

is assigned a coefficient of: tr(A NN\, \)

——k|.k’
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Now it is very striking that such a trace structure, respecting arder
up to cyclic permutation, has already been observed in twistor diagram
theory. As described in TN 23, the amplitude for pure SU(2) gauge field
scattering takes the form

G

Note that these twistor integrals fall into a form analogous to the spinor
integrals above, since the period of the logarithmic (-1)-line is just unity,
ie. each is a "period” of

Of course these integrals are entirely different from the spinor integrals
above in that the external state parameters appearing in the exponents
now correspond (o Aeliczlzes and not o momenia Furthermore we have no
action principle or Green function in the twistor picture to lend substance
to these similarities.

But the analogy is close enough to give some more support to our
conjecture that there exists an interpretation of these integrals as suitable
invariant summations over twistor manifolds within a CFT4.

Ar\)l\w J'lbddl J

[11 APH, RP. and M.AS,, to appear in Physics Letters, see also TN 26.
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Notes on the correspondence between Feynman diagrams and
twistor diagrams

In TN25 we established a remarkable twistor-diagrammatic
formula for second-order massless o% scattering and deduced (a) some
extensions to higher-order ¢ amplitudes and (b) a new viewpoint on the
crossing symmetry problem for the first-order ¢4 amplitude. Here are some
notes on the features that arise on attempting to develop these ideas more
generally and systematically as a "transiation” procedure.

§1. One clear feature emerging from these g diagrams is the pair of lines
|

— |

representing the "off-shell" scalar propagator A (x - y)

with the “on-shell” propagator = °_ as its "period”.

Note that this scalar propagator can be exhibited in a simpler context,
namely the [irst-order process .

v 4

where the vertex is given by the so-called "Yukawa interaction” of massiess
fields expressed by the Lagrangian ~-A ?

Y Ya

Standard arguments translate this first-order amplitude into

(f\;/«A /(WA/

One can think of the massless spin-1/2 fields as Zest-functions for the
twistor representation of Ap(x - y). It is generally useful and important to

include the conformally invariant “Yukawa" interaction along with the g*
interaction in studying the structure of higher order diagrams.



| 4

§2. The scalar propagator then fits into a scheme together with

o i B
—°

—1 —

.'_______‘.__—-

for massless spin-1/2, spin-1 propagators respectively. In each case the
propagator can be regarded as an operator which projects out an eigenstate
of spin, in such a way that the operator is ide mpotent Thus:

- TrT-11L
0;::331 Uzi

The contours here are consistent with

-
(o} ° 0 °. o=
- __‘r —— )
— N
6 © = ° { , T ‘ , e
v S ° — O
. o [*] ..

If Feynman propagators AF are equivalent to these “chains” then how
could Feynman verilses, of essential form

A axp) Alxay Axxy) a4,

be transiated? One might expect twistor-diagram vertices of form:

\;.)

o//

o

\

2

For this to be true, a necessary condition is that we can differentiate w.r.t.

Xy. X2 and x3, thus reducing each Al-‘ to the § -function, and get the right
answer - as evaluated by using six massless fields [two in x{, two in 1,
two in 13] as “test-functions”. The form of the derivatives will depend upon

which particular helicities we are looking at, but essentially the problem
boils down to establishing a twistor-diagrammatic formula, taking this
form, for the scalar @5 integral

Jo,00 8,0 040 80 ag(0) 0,00 d'
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§3. There /s a naturally suggested structure of this form for the @
integral. It's useful here to use an abbreviated twistor diagram notation:

. ) -
W(tte _, —-—) AN +°r © )

Now let us begin with @3. Certainly the diagram 5,5
3

3

(using integration
by parts)

{

is valid in all channels. This would imply the (conformally invariant)
correspondence

K% A1
i | T~ j

P - 9s =7 ¢
¢ o
C4

(again using simple integration by parts). If so we have also




:

Y

|6

By “superimposing” these (ie. looking at period structure) we are led to
suggest the correspondence

"

~h ~a )
Y ,% ¥ ’V’ﬂ
/
¥ \¢
= ’Y;‘,
— }& (A€)
X q? y
2
which is equivalent to the 8% formulas
o4t ett

(by permutation symmetry). This is in turn is the key to describing all
Feynman vertices in twistorial terms, as indicated in §1.

These are only guesses, but they embody important constraints
on what formulas could possibly be correct. For any possible @5 formula
implies a formula for the Feynman diagram (*), which one would expect (at
least naively; see below) to be conformally invariant, and to have periods
related to known integrals. What we have done above is to construct
formulas which have a chance of satisfying these strong conditions.
Unfortunately they have so far proved too difficult to check explicitly.

Another highly significant constraining feature of these integrals
arises from the limiting cases in which one external massiess field is
allowed to tend towards the consiant field. In the twistor picture this is a
geometrical limit arising as the point defining an elementary state moves
towards I. [n the space-time integrals the effect is that of reducing gdto &
or 80 10 ¢4, These limits must all make sense and agree - a strong condition.



In particular we require
contours which justify:

[h\t. tond lpat senlas (—.tb{)

with the numerator factor involving l"fz “cancelling” the effect of the
external parameters tending to ‘" At first sight, this is impossible:
integration by parts seems to show that the limit has to be zero. But it does
seem to be possible if the external fields are attached in the way suggested
in TN2S, viz. as

This problem is connected with the puzzle noticed long ago by RP, namely
that one may formally deduce

for the inner product of two 2-twistor functions of mass zero, and yet
simple integration by parts shows that such an integral must vanish.

A further question concerns the assumption made above that
higher-order diagrams built out of conformally invariant interactions,
should themselves be conformally invariant functionals. In standard QFT
conformal symmetry breaking is necessary for renor malisation and so it is
possible that in the twistor picture also conformal symmetry breaking has
to play some essential role in building up diagrams.

Putting these points together, it looks very likely that the
formulae suggested above cannot actually make sense without some
modification of the geometry of twistor space at I - something expected
anyway for the description of mass (and gravity). My hope is that when
correctly interpreted, the twistor diagrams written down above will form
the basis of a systematic calculus. |

A. P. Hodges
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A notc on Pochhammer contours

The formula

gg b = (2xo) (x.(’)cd'(f’-x)“(t{-‘*)b/‘
A c —
p (R (7 p) () [la) CCE) T (c)
(a+b 'é=2)

can be demonstraled by deforming Lhe symmetrical contour P to

Provided Re(b) and Re(c) are both > -1, this integral is:
(1 - e 2mia) (] - e 21id) y (standard noncompact beta-function 'mtégral)

+ (contributions from small arcs vanishing as radii tend to 0)
Extension to all non-integral a, b, c then follows by analytic continuation.

This formula and its justification generalises to CP? (and presumably to
CP* ); namely we have for a 2-dimensional Pochhammer contour P,
A-)y (I"l m (e}

éyb"q e () (Rws) (s k) (54
"‘t-"Lﬁ)“‘"L-[J)"fq~2r)‘(fl'3)‘L A M) TUd)

P

(a+b+c+d =3)
In this case, 1o define the contour P, consider the noncompact integral of
the given form over a triangular region:

The intcgral can be cvaluated explicitly. Chaoose coordinates u, v for

CP2- (qax=0 1£=0 A¥=0,15=0) such that u=9.*4-8 v=np/q3

The resulting integral, a standard cxtension of the beta function integral, is
finite provided Re(a), Re(b), Re(c)» -1.
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Now, we need Lo glue Logether eight copies of this triangle, together with
sections with radius ¢ round the branch points.

One may check that the triangles fit togther like the faces of an octahedron,
yielding a closed contour of topology S2, and yield the integral as stated.

o~+§ P /a

Triangular face labelled
"b" indicales that the
triangle 18 on the
sheet characterised by
factor e 27ib (erc))

Special cases when one (or more) of the complex exponents is actually an
integer. In the original one-dimensional case, the Pochhammer contour of
topology S! becomes equivalent to the sum of two disjoint S! 's

(i.e. 10 S%x Sh).

In the two dimcensional integral what happens is that one “vertex” of the
octahedron can be identificd with the opposite vertex, so that the S? can be
deformed into a torusS! x §!. Or this can be seen directly from the form of
the integral: if d is an integer there is clearly a contour constructed as
(small circle round -8 = 0) x (one-dimensional Pochhammer contour
inside the CP! { 4.5 =0)).

Higher-dimensional Pochhammecer contours of this kind play an cssential
role 1n evaluating such twistor diagrams as

where many logarithmic factors are to be convoluted.

A detny o dges
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Cohomology Reduction
through Qadir’s Intertwmmg Operators

In his article on “Qadir’s intertwining operators” (TN 25), R.P. described certain twistor
contour integrals first suggested by A. Qadir in his Ph.D. thesis (London, 1970). The orig-
inal use of these operators was to pass from representations of SU(2,2) etc. to equivalent
ones. Here, I wish to describe their cohomology reducing properties.

Qadir’s integrals

Qadir’s integrals (short QI) deal with holomorphic functions in four twistor variables
W, X,Y, Z, homogeneous of degrees w, z,y,z respectively. Additionaly, these functions
must satisfy

(1) fW+AX +uY 472, X +pY +02,Y +72,Z) = f(W,X,Y,Z)
(VA 7, p0,0,T).

In their original form, QIs are formal contour integrals
a) ¢(W,X,Y,Z2) =ff(w,x, Z,Y +AZ)dX
(2) b) ¢A{W,X,Y,2) =ff(W,Y,X + AY, Z) dA
c) gs(W,X,Y,2Z) :ff(X,W+ AX,Y, Z)dA

and some higher versions. Each expression satisfies (1) and is homogeneous of degrees
g1:(w,z,z+ 1,y — 1) g2 (w,y+1l,z —1,2) g3 :(z+1,w—1y,2).

We restrict ourselves to the case that w, z,y,z are integers. Condition (1) and homo-
geneity imply that f can be rewritten as a function of higher valence skew simple twistors:

{ t { |
FOWXYZ,XVZ2,YZ,2) = f(W,X,Y,2)

F is also homogeneous, of degrees (w,z —w,y —, z —y) in the respective variables. Hence,
F actually represents a section of some line bundle over Fy,3, the flag manifold of projective
twistor space (points C lines C planes C PT). The dependence of F' on the first variable
1s in a sense trivial; indeed, the value of the first homogeneity degree does not alter the
line bundle F represents. Therefore, the first variable is ignored in what follows.

We denote the sheaf of sections of this line bundle by O(z-w,z—y)[y—z]. Abstractly,

Ow.7lal == 13 0(p) ® n; O(r) ® 15 O[q]

where 7] are pullback maps for the fibrations n; : Fy53 — F;.
(Fi=PT,F; =M, F; =PT").
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Cohomology reduction

The aim of this article is to show that there are isomorphisms

a) H"(Fi23,0(p.~r-2)(d]) — Hn—l(Flzs,O(P,r)[q—r—ll) (r 20)
(3) b) H™(Fia3,O(-p-2,00q)) — H" ' (F123, O(p,nlg—p-1]) (p=20)
¢) H™(Fi23,0kn(-¢-21) — H" 1(F123,0(p—g-1,r-¢-1lg) (g > 0)

which are realised by the QlIs a), b) and c) respectively.
The most interesting of these is case b); the others behave similarly. The proof of b)
involves direct images along the fibration

uZFlzg —>F13:A.

We require an interesting non-standard vector bundle over A, which can best be described
by using a third spinor-type index.

DEFINITION . The bundle S; on A is given by its fibre at [Wa, Z?] € A
Si |[szp] = {simple skew R*? such that W,R*? =0 = RaﬂZﬂ} .
As for the usual spinors, there is a skew product on S;:
SiNSg = S(-1,-1)
This is given explicitly by (P*#) A (R®) — P*’ R4, on the fibre over [W,, Z?]. To see

that this gives the desired result, write P*? = Zl*X# and Rs., = YipW,). X and Y must
satisfy the incidence relations Z°Y, = 0 = W,X?, and therefore

Po”ﬂRﬁ,7 = -i—ZQW,,XﬂYﬂ € (W) ®(Z29) = S(-1,~1) ‘[w.,,z"]

as required. As usual, the sheaf of sections of S; is denoted by O .
We also need some vanishing statements (similar to the ones given in [EPW]).

VANISHING LEMMA. For p:Fyo3 — Fy3,

Vi#0 ifm>0
/‘iOA,,,B(krl)[m] =0 Vi ifm= -1
Vi#1 fm<g =2

Fibres of x4 are CPy, and direct images give the fibrewise cohomology, and so the lemma
follows from the usual vanishing theorems for cohomology of homogeneous sheaves on CP;.
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The proof of b) starts with the short exact sequence

1I'A...1|'B ¢

Fizs: 0—=O@pn-¢-21 — O(A_“BC")(P,")["II - Ow(p—l,r—l)[ol — 0

T+l q

Multiplication by = 4 is interpreted as the natural inclusion O[-1] = O, (on Fj23), and
7¢ = €“Pry requires the symplectic form €D e Ol€Dl(_} —1). Taking cohomology along
fibres of u gives a long exact sequence of direct image sheaves. Because of the vanishing
lemma, the only nonzero part of this long exact sequence is the coboundary map

O 4. gye-1r=000] — p,Opn)-g-2].
Now we can use

Fiz: OA-B) & 1. Olq)
= O(A...B) = 4 O(—¢,-9)ld]

to get

(4) 1O, (—9—2] = p, O(p—1-g,r~1-9)[g]-

Finélly, the move back to Fy,3 is accomplished with the Leray spectral sequence:
EPY = HY(Fy3,pb F) = HPYI(F13, F) F sheaf on Fq,3.

For both sheaves involved in (4), the corresponding spectral sequences are degenerate
(again by the vanishing lemma). Hence

H"(F123, Op,)~g-21) = H" 7 (F 13, 1, 0w~ 9-21)
(5) > H" 7} (Fs, 1 Op—g-1,r—¢-1])
= H*"Y(F 123, O(p—g—~1,r—g-1)g}).

as desired. ]

Starting with (3), one can go on to prove the Borel-Weil theorem on F,3 by stringing
1somorphisms together.

Now, where do QIs come in? Again, take case b) in (2) as an example:

——tt —+— i

e |
(6) G(XYZ,YZ,Z)= j{F(XYZ, XZ +\YZ,Z)dx

in Fj93-compatible notation. The integration takes place over branched contours on the
fibres of y1 : F123 — Fy3 (the point A = co must be included), and the homogeneity changes
from (p,—¢—-2,r)in Fto(p—q¢—~1,q,r~q¢—1)in G.
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Given a Stein neighbourhood U in Fi3. Then, (6) maps first Cech cohomology repre-
sentatives on u~1(U) to global functions on p~!(U) and preserves cohomology classes. In
other words, we have a map

o }{: 106 ~a-2(U) — peO(p=1-g,r—1-g)igl(U).

This involves picking a (suitably nice) Stein cover of p~}(U), and choosing a (smooth)

family of branched contours (one on each fibre over U) compatible with this cover. Roughly,

this means that each double overlap of the cover (restricted to a fibre) contains exactly one

branch. (Branched contours are explained in detail in “Spinors and Spacetime II”). Then,

a splitting process due to Spaling and Ward (See TN 1) is performed to give the result.
All this is just a generalisation of the usual zero rest mass integral procedure.

Anyway, by choosing the U’s to be the n-fold overlaps of a (nice) Stein cover of Fy3, (7)
induces the map

f i H" Y (Fy3, 5 00p,nl-g-2) — H" 1 (F3, puOlp-g-1,r—¢-Dia])

which realizes the middle step of (5).

Many thanks to Roger Penrose and Rob Baston for lots of discussions and suggestions.

Klaus Pulverer
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NON-HAUSDORFF TWISTOR SPACES FOR KERR AND SCHWARZSCHILD

It is well-known that Einstein's equations for stationary, axi-
symmetric vacuum space-times can be reduced to a form of the rank 2
anti-self-dual Yang-Mills equations by the introduction of Weyl co-
ordinates (see, for example, Witten 1979). N.M.J.W. and L.J.M, (1938)
showed that if these are solved locally by using the usual Ward
transform, the holomorphic vector bundle over ordinary twistor space
is actually the pull-back of a bundle E over a non-Hausdorff 'reduced'
space.

Weyl co-ordinates are notorious for concealing the interesting parts
of space-time geometry. For example, in the Schwarzschild solution, they
only represent R»2m, and the horizon is a part of the symmetry axis.
(I shall use R to denote the radial co-ordinate in Kerr and Schwarz-
schild.) Since all the information about the analytic continuation of
the manifold is contained in the exterior part of the metric, one might
expect to find it in the twistor description; and this is in fact
possible. The Kerr and Schwarzschild solutioﬁs have reduced twistor
spaces which consist of two Riemann spheres Sy and Sy which are
identified except at three pairs of points; these points are the points
at infinity and w = .‘:(mz-—az)Ji where w is a co-ordinate on the spheres
and a = 0 in the Schwarzschild case. The bundle can be described in the
standard form which consists of first restricting it to each sphere and

then giving the patching matrix P between them. In each case, qS is
0

LI @ LO; qsl is L_l "] LO; and
' | (w+m)2 + a2 2am
P= = 2 2 .
W -m +a 2am (wem)” + a

(again, a = 0 for Schwarzschild). This description is unique if we
demand that P be real (in the sense P(w)= P(w) ) and symmetric, and

, provided we know which points belong to which sphere in the reduced
ﬁwistor space. We can, however, obtain a different patching matrix from
the same bundle by changing our minds about which of the double points

belongs to each of S0 and S,, and then putting the bundle in standard

form over the two new spheres.

We therefore have four different possibilities. If we take Sp and S, to

be labelled by the points at infinity, then as well as the original

1



s

description we can swap the points at +b, at -b or at both, where

b = (mZ_aZ)%. In order to see what this means in terms of the space-~
time, we have to introduce the idea of the patching matrix's being
'adapted' to one part of the axis in the (z,r)-plane. (Here z and r
are the co-ordinates on the space of the orbits of the Killing vectors
in the space-~time; r=0 represents the symmetry axis.) This simply
means that we can find the metric on the space of Killing vectors

on this part of the axis by taking the limit as r<y 0 of its value in a
neighbourhood of it. The patching matrix P given above is adapted to
z»b, which corresponds to one half of the axis of symmetry in the space-
time, outside the horizon. If we interchange the points at w=b, we get
a matrix adapted to ~b<{z<b, which is the (outer) horizon; and if we
interchange the points at both web and w=-b, we have a patching matrix

adapted to the other half of the axis, where z{-b.

2<4h B 3>b

~bspch

In each case, for both  Kerr and Schwarzschild, the bundle E restricted
to S, is Ll "] L0 and the metric on the gpace of Killing vectors can be
extended analytically to the axis or horizoa. Moreover, in the region
where -b{z¢b, we can continue this metric to the region where it is
negative definite., To do this, we use the same construction as before
(see Woodhouse and Mason 1988), but take values of r which are purely
imaginary. Thus an orbit of the Killing vectors, which is representd by
the pair of points w = z + ir and w = z - ir, now corresponds to a pair
of.points on the real axis in the reduced twistor space. By taking r to
be both positive and negative (when it is real) and Im(r) to be both

positive and negative (when r is imaginary), we can construct the usual

cross-over at R = m + b, e 50
o T
2<0 I:.z>0
mR)<¢o

We can now chooge either to identify regions I and II, and regions III
and 1V, or to put in the orbit (z,r) = (b,0) which corresponds to the

cross-over itself. It can be shown that regularity of the metric (on the
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space of Killing vectors) at this point depends on the singularity
structure of the patching matrix at ws=b,

If we swap the points w=-b in the Kerr solution, we find that we get
another patching matfix Q of the kind that produces a cross—over (that
is, Q is negative definite on the real axis in the w-plane); and that
E restricted to S0 is still Ll @ Lo. If we take Q to be adapted to
-b{z¢b, then we can construct a. similar picture to the one above; and
the patching matrix adapted to z)b turns out to be.the inverse of the
original matrix P. Since this can be obtained from P by replacing m
with -m, the exterior region is now a negative mass Kerr solution.’

This of course must contain the ring singularity; the conjecture is
that this is represented by the pull-back of E to the fibre of
(Euclidean) twistor space above the appropriate points being non-
trivial.

To obtain the Penrose diagram for the Kerr solution (see, for example,
Hawking and Ellis 1973 pl65) we have to identify region III for the
'+b' crossover with region IV for the '-b' crossover. This can be done
by considering the effect on the patching matrices of a reflexion of
the (z,r) plane in the line z = 0. We also have to do the conformal
rescaling which allows us to adjoin“}’to the space-time; it is at the
moment less clear how the possibility of doing this is shown up by
the twistor picture.

What is clear, however, is the difference between the Kerr and Schwarz-
schild solutions. For the latter, interchanging the points at w=+m gives
the same cross-over picture as for Kerr; but when we make the switch at
L

w=-m, we find that the bundle E restricted to the new S0 becomes L2

It is straightforward to see that this leads to a pole in the metric on

1

the space of Killing vectors as r-»0; this is of course the usual

curvature singularity at R = Q.
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A conformally invariant connection

Toby Bailey
November 4, 1988

This note is a postscript to the last section of my article in TN26 on the
conformally invariant connection associated to a direct sum decomposition
of one of the spin bundles. The general result lying behind the observations
in that article , stated for convenince in the holomorphic category, is:

Theorem: Let M be a complez conformal manifold with conformal met-
ric gap and a given tensor field J,b with J(as) = 0 and J6J.b = —6,0. Then
there exists a unique torsion-free connection V, satisfying

Valt* =0

Vagse = Xagee for some X,.

The second condition is simply that the conformal metric is preserved.

If one is given a direct sum decomposition of 04 in a complex space-
time then J,* = 1(04t? + ¢40%)eq®’, where 04,14 constitute a spin-frame
defining the decomposition, satisfies the above conditions and the resulting
connection is given in components by RPs ‘conformally invriant edth and
thorn’ operators.

The significance of the rather strange condition on the derivitive of J,°
which defines the connection is unclear, and work continues on the use of
this connection in type D conformal space-times and related areas.

Thanks to MGE and MAS.



Complex paraconformal manifolds—their
differential geometry and twistor theory

T.N. Bailey* M.G. Eastwood
October 7, 1988

Abstract

A complex paraconformal manifold is a pg-dimensional complex
manifold (p,q > 2) whose tangent bundle factors as a tensor prod-
uct of two bundles of ranks p and g. We also assume that we are
given a fixed isomorphism of the highest exterior powers of the two
bundles. Examples of such manifolds include 4 dimensional confor-
mal manifolds (with spin structure) and complexified quaternionic,
quaternionic K&hler and hyperKihler manifolds.

We develop the differential geometry of these structures, which is
formally very similar to that of the special case of four dimensional
conformal structures [30].

The examples have the property that they have a rich twistor
theory, which we discuss in a unified way in the paraconformal cate-
gory. In particular, we consider the ‘non-linear graviton’ construction
(29], and discuss the structure on the twistor space corresponding to
quaternionic Kahler and hyperKahler metrics.

We also define a family of special curves for these structures which
in the 4-dimensional conformal case coincide with the conformal cir-
cles [34,2]. These curves have an intrinsic, naturally defined projec-
tive structure. In the particular case of complexified 4k-dimensional
quaternionic structures, we obtain a distinguished 8k + 1 parame-
ter family of special curves satisfying a third order ODE in local co-
ordinates.

"This work was carried out with support from the Australian Research Council. T.N.B.
would also like to thank the University of Adelaide for hospitality.
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Conformal Circles and Parametrizations of
Curves 1n Conformal Manifolds

T.N. Bailey* M.G. Eastwood
Mathematical Institute Department of Mathematics
University of Oxford University of Adelaide
Oxford, U.K. Adelaide, S. Australia

July 26, 1988

Abstract

We give a simple O.D.E. for the conformal circles on a confor-
mal manifold, which gives the curves together with a family of pre-
ferred parametrizations. These parametrizations endow each confor-
mal circle with a projective structure. The equation splits into two
pieces, one of which gives the conformal circles independent of any
parametrization, and another which can be applied to any curve to
generate explicitly the projective structure which it inherits from the
ambient conformal structure [1].

We discuss briefly the use of conformal circles to give preferred
co-ordinates and metrics in the neighbourhood of a point, and sketch
the relationship with twistor thenrv in the case of dimension four.

*This work was carried out with support from the Australian Research Council. T.N.B.
would like to thank the University of Adelaide for hospitality during this time.
AMS subject classifications. Primary 53A30; Secondary 58G30, 58G35.
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On the Twistor Description of Sourced
Fields

T.N.Bailey
M.A .Singer”
Mathematical Institute, University of Oxford, U.K.

12 October 1988

Abstract

Massless fields with source on an analytic world-line are double-
valued, and it was shown by Bailey [1985] that a large family of
such flelds have a twistor description in terms of relative cohomol-
ogy groups. In this paper it is proved that all right-handed mass-
less fields are obtained in this way, and that if the sheaves O(n - 2)
are quotiented by the polynomials, then the relative cohomology of
the resulting sheaves describes all left-handed sourced massless fields.
The proof for right-handed fields uses techniques developed by Singer
[1987,1988| for applying the Penrose transform to situations in which
the ‘pull-back mechanism’ is non-trivial. For the left-handed fields
it is necessary to use some additional arguments involving the con-
served quantities {e. g. momentum and angular momentum for spin
2) of these fields; it is shown that the conserved quantities are the
obstructions {o a twistor description of left-handed fields in terms of
the cohomolagy of O(n — 2).

Relative cohomology and projective
twistor diagrams

S. A. Huggett*
M. A. Singer!
Mathematical Institute, Oxford OX1 3LB, U. K.

10 October 1988

Abstract

The use of relative cohomology in the investigation of functionals
on tensor products of twistor cohomology groups is considered and
yields a significant reduction in the problem of looking for contours
for the evaluation of (project’ =) twistor diagrams. The method is
applied to some simple twistor diagrams and is used to show that the
standard twistor kernel for the first order massless scalar ¢* vertex
admits a (cohomological) contour for only one of the physical channels.
A new kernel is constructed for the ¢* vertex which admits contours
for all channels.
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A Hamiltonian Interpretation of Penrose’s Quasi-Local Mass

LJ. Ma:sont

Dept. of Physics and Astronomy,
University of Pittsburgh,
Pittsburgh, PA 15260,

and

New College,
Oxford OX1 3BN,
United Kingdom.

Abstract

A connection is established between Penrose's definitition of quasi-local mass and
the more conventional notions of mass and momentum etc. arising from the
canonical formalism of general relativity (which exist at least asymptotically). It
is shown that the each component of the ‘'angular momentum' twistor can be
thought of as the value of a Hamiltonian which generate motions of regions of
the space-time which tend towards one of a collection of 'quasi-Killing vectors’ on
the bounding 2-surface on which the computations take place. The quasi-Killing
vectors are obtained from solutions of the twistor equation, and essential use is
made of the spinorial version of the gravitational Hamiltonian first empioyed in
Witten's simplified proof of positive energy in general relativity.

These ideas are then used to suggest a variation on Penrose's quasi-local
mass definition using ‘quasi conformal Kiling vectors' rather than quasi-Killing
vectors. This has the advantage that there are only 16 real quantities rather than
the 20 real (10 complex) ones from Penrose‘s original definition.

tEsmée Fairbairn Junior Research Fellow and Andrew Meilon Postdoctoral Fellow supported also in part by

NSF grant no. PHY 80023.4 FULGAT 4T Scuocmasull.
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Insights from Twistor Theory

LJ Masont

University of PittsburghI
Pittsburgh, PA 15260

Abstract

This article discusses how twistor methods may be applied to problems arising
from the canonical quantization of gravity. First of aifl the hypersurface twistor
space construction is briefly reviewed, and a correspondence between (comptex)
initial data sets and a compiex 3-manifold together with two cohomoiogy classes
is described.

Thrée possible applications of the methods are discussed. Firstly, a
polarization condition analagous to that of positive frequency for initial data sets
is presented. Secondly, it is arqued that a canonical quantization procedure based
on the use of the twistorial data would realize Penrose’'s suggestion that one
should quantize gravity in such a way as to ‘fuzz’' out space-time points, leaving
null directions weil defined; the usual procedure smears the metric and therefore
the null directions but leaves the space-time events fixed. Thirdly, it is pointed
out that the gauge group for the twistor data is unrefated to the space-time
diffeomorphism group so that the technical difficulties associated with factoring
out the diffeomorphism group can be avoided.

{Andrew Mellon Fellow and Fulbright Scholar supported in part by NSF grant no Phy 80023.
{Present address, New College, Oxford OX1 38N, UK’ (Esmée Fairbairn Junior Research Fellow).
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LS

Backlund transformations for the anti-self-dual

Yang-Mills equations

L. Mason
New College, Oxford University

England

S. Chakravarty and E.T. Newman
Department of Physics and Astronomy,
University of Pittsburgh,
Pittsburgh,

Pennsylvania 15260

Beginning from any given (local) solution of the GL(n,C) anti-self-dual
Yang-Mills (ASDYM) equations on Minkowski space, a simple technique for
the generation of large classes of solutions (perhaps in some sense all)
is given. The origin of this technique is described in terms of two
versions of the Ward construction. The resulting description of Backlund
transformations is sufficiently simple that it is then possible to
identify the group generated by the collection of all such Backlund
transformations and the space on which it acts in terms of concrete

functions.

in J. Math. Phys. 29 (4) april 1988
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