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On Ward’s Integral Formula for the Wave Equation in Plane Wave

Space-Times
[ T Veuen

In (1], Ward presents an integral formula for the general solution of the wave equation in plane wave
space-times. The purpose of this note is to show howthis relates to the twistor integral formula in flat
space, and to generalize the formula to arbitrary helicity. The generalization of the formula shows how
it is that Maxwell theory satisfies a kind of Huygens principle in plane wave space-times. This suggests
further generalizations of Huygens principle. However, electromagnetic fields in plane wave space-times
provide the only nontrivial example of such generalized Huygen’s principles.

Ward's sntegral formula:
Consider the plane wave space-time with metric:

dsQ:du-dv—Gij(v)dri-dzj ,j=1,2.

For convenience we shall choose a conformal scale such that det(G;;)=1 (all our considerations will be
conformally invariant, so this doesnt involve any loss of generalityﬁ. The hypersurfaces of constant u
are null and support é-function solutions, 6(u), of the wave equation, (this follows from
Ou=0=(V,u)(V®). ' » .

The hypersurfaces of constant ub:u+2r'b,~+F’1bibj (where F”= [G"(v)dv) are related to the
hypersurfaces of constant u by the symmetries

(u, v, ri)—v(u+2rib'-+ﬁ’£jbibj, v, r"+F"jbj),

and so also support é-function solutions of the wave equation. We can form the general solution of the
wave equation by averaging over these é-function solutions:

¢(z):/€b(ub,bi)d26

where ¢ i1s an arbitrary function of its three arguments. When G’.j(v)zéij, (Nat space) the formula
reduces to the Whittaker integral formula.

Relationship with the twistor integral formula
In flat space, this formula can be seen to be the twistor integral formula as follows. Write:

Tl T =C=by+1by, 7y /To=(=b, —1b,.

!
Then ub:zAA WA,fA/WO,?rO:wAfA/ﬂ'O,TrO and we can put:

PA2b=(F o) D(WAT g1 0T TR ardr

so that (ﬁowo,)“QGP(wAT_rA,WA,,TrA)TrAdTrA is a homogeneity degree —2 Dolbeault representative on
twistor space constructed from the characteristic data at 4, &, for the field ¢ as in my TN article [2].

A difficulty with the twistorial interpretation of this formula in the curved case is that the
appropriate complex structure on the space of primed spinors (on which b; are coordinates) shifts as »
varies; wl,(v)/wo,:(:(v):mi(v)bi, the b, are held ‘constant. The complex structure is determined by
the 2-metric Gij(v):ﬁz(imj). It is therefore not clear how one can obtain a global holomorphic
interpretation of the formula in the conformally curved case. (One can, of course, provide a

holomorphic interpretation of the formula on each of the hypersurface twistor spaces based on
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hypersurfaces of constant v; the above formula then answers, to a certain extent the question of how to

identify cohomology classes based on one hypersurface with those on subsequent hypersurfaces.)

Generalization to higher helicity

Plane waves, and in fact all Brinkman waves, have a covariantly constant spinor, aA, aligned along the
generators of the hypersurfaces of constant v. This can be used to raise and lower helicity of massless
fields.

If #(z) is a solution of the wave equation, then goAB:oA‘VAA,oB'VBB,qS(z) is an ASD solution of
the Maxwell equations. All solutions of the Maxwell equations can be put in this form (this follows
from [OA,VAA,,OBIVBB,]:O together with OAIVi,‘,DAB:O from Maxwell’s equations). Similarly, all
solutions of the neutrino equations can be put in the form o? V 4#(z). Higher helicity fields
constructed in this way will not, in general, satisfy the Z.R.M. equations because of Buchdahl

conditions. However, there is a consistent potentials modulo gauge description

—0 ., - B!
¢AA'1- Al T % Vapd(2)

satisfles the {(n—1)-potential equations.

This description leads to the following formula for the general solution of Maxwell’s equations:

wAB(z):/oA’VAA, PV i ®(uy,8,)d%0.

Note that the first V in this expression acts on the free spinor index on the second V as a covariant
derivative. Let 3“' denote the coordinate derivative in the spinframe determined by the null tetrad
{(=dv, n=du, m= m‘-dzi, ﬁl:ﬁl‘-dl‘i where m (v} (v)=G,;(v) and the phase of m, is determined by
the condition that m[iﬁlj]—{»ﬁz[‘-mﬂzﬂ (the dot, :, denotes §/38v). (Note that this last condition
together with det(G;)=1 implies that m;=&m,; for some 7(v).) Then the spin coefficients are just
7ch:0'LA,0AOBOC and ¢,=¢. This formula then becomes, using coordinate derivatives in the

above spin frame:

goAB(r):/{gA'aAA, 080 gy b,) 40040500, B) hb.

For higher helicity, the ‘field’ versions of these formulae fail to make reasonable sense because of
Buchdahl conditions, however the potentials modulo gauge formulae do make sense.

{In the flat case, o=0, write TrA:T'rooA'(?AA;‘ub and 6:(?0)~4(33b¢)((7‘r0)"2ﬁ‘4dTrA). Then the
above becomes the Dolbeault version of the (—4)-homogeneity complex conjugate (dual) twistor

integral formula

szB(z):/%ATrB&AiAdTr
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! . . . .
If we put 67:(#0,)“‘0"1 9 4 41> the formula generalizes the 0-homogeneity twistor integral formula.]
Huygen’s principle

In Penrose (1972) it is demonstrated that a é-function solution of the Maxwell’s equation in a
conformally curved plane wave space-time must also have a ‘tail’. One can produce such solutions
easily using the above ideas. Pick a null hypersurface, u=0. Let 8(u) be the Heavyside function,
f(u)=1 for u>0, and #(u)=0 for u<(. Since any function of u is a solution to the Laplacian, we have

'

in particular that ¢ =uf(u) is a solution. This means that AAA,:OA,OB V, p¢=0,t,0(u) is a vector

otential solution to Maxwell’s equations. The corresponding field is
p q

wap=tatgb(u)+o40p00(u)

which has the tail o 0g068(%).

If, instead, we start with ¢=60(u) we obtain a é-function vector potential, AAA,:oA,LAé(u),
without a tail, and so the field, tpAB:LALBél(u)+ 040p06(u), also has no tail. This would seem to
suggest a generalized form of Huygen’s principle in which it is sufficient to have solutions supported on
light cones or (as we have shown above) solutions supported on a family of null hypersurfaces such that
there is at least one hypersurface in the family normal to each null direction through each point. The
relevant solutions may be a sum of the first n derivatives of §-functions thus leading to a hierarchy of
Huygen’s principles, 36", in which for the nm, only the first n derivatives of é-functions are allowed.

An alternative formulation of Huygen’s principle is that if one poses initial data on some
hypersurface X, then the solution at a point p depends only on the data at the intersection of the light
cone L, of p with £. The generalizations would then seem to correspond to requiring that the solution

at p depends only on the data at L,NX and its first n derivatives. It would be interesting to find an

example of 3>,

Many thanks to George Sparling for discussions.
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