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The purpose of this note is to describe some results concerning hypersurface twistors and initial data.
The first results describe the extent to which hypersurface twistor spaces can be used to encode initial
data. In particular I discuss how the situation changes significantly when the hypersurface is chosen to
be a light cone or at infinity, where, roughly speaking, half the data is lost. This fact leads to some of
the difficulties one has with the ‘Googly’. 1 also discuss (the failure of) a twistorial definition of
positive frequency for initial data sets on hypersurfaces.

Encoding initial data

Before one can start using and applying hypersurface twistors, there arises the question of how they can
be used to encode initial data sets for the Einstein vacuum equations. This question can be divided
into two parts. The first part is how the conformally invariant part of the initial data set can be
encoded (this consists of the conformal structure on a three manifold and the trace free part of the
extrinsic curvature). The second part is concerned with encoding the conformal factor of the three
metric and its time derivative, the trace of the extrinsic curvature.

There are (at least) two approaches to encoding initial data into hypersurface twistor spaces. [
refer to one approach as the ‘real’ approach, and the other as the ‘complex’ approach. Let X be the
complexification of a real space-like hypersurface ER in an analytic Lorentzian space-time M. Let PY
be the hypersurface twistor space, and PN be the (real) codimension one hypersurface in PJ whose
points correspond to hypersurface twistors which intersect Z’R. In the real approach one is allowed to
know the location of the hypersurface PN in PJ whereas in the complex approach one is only allowed

PT as a complex manifold and holomorphic structures thereon.

The real approach: This is now relatively well understood, Sparling (1983) LeBrun (TN9,1984&1985),
Penrose (1984), Mason (1985). The real approach is relatively easy to compute with as calculations
can all be performed locally on PN using the Chern-Moser connection. LeBrun showed that PN as a
CR manifold determines X' and the conformally invariant part of the initial data. In Mason (1985) it
was also shown that one could encode the information of the conformal factor if one introduced a
homogeneity degree two (1,0)-form, ¢, which generalizes IaﬂZadZ'a from flat space twistor theory. The
constraint equations could then be articulated as [[aﬂ”]:O. In order to obtain a formula for the
evolution, it was necessary to introduce a further homogeneity degree two (1,0)-form, o, which
generalizes HaﬁZ“dZ’a; o encodes the information of the location of the hypersurface X in M*, in flat
space a point Xaﬁcorresponds to a point of X' iff Xaﬁﬂaﬁ =0. This approach has various defects; from
a twistorial point of view, the data depends on free functions of 5 variables, as compared to 3-variables
for the gravitational field initial data. The characterization of those CR manifolds corresponding to
gravitational initial data sets requires the knowledge of the location of the CP"’s in PN correponding to
points of ER' These are then determined locally using the Chern Moser connection. These facts

substantially limit the applicability of this approach.
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The complez approach: This has not been much studied, but has presumably been around in folklore
for some time. The basic observation is that, using a generalization of the nonlinear graviton
construction, PJ can be seen to be the twistor space of a 4-dimensional conformal manifold, M*, with
ASD Weyl curvature into which 23 is embedded toge.ther with its conformal equivalence class of initial
data (conformal 3-metric and trace free part of the extrinsic curvature), LeBrun (1979). The space A"
is colloquially known as ‘heaven on earth’. In order to capture the conformal initial data set, one must
encode the information of the location of X2 in A%,

When the extrinsic curvature is pure trace, the location of ¥ can be encoded by means of a global
holomorphic homogeneity degree 2 1-form, o, on PT (o vanishes on restriction to those holomorphic
curves corresponding to points of ¥). When the extrinsic curvature is general it appears to be
impossible to encode the location of X in A using local holomorphic structures on PJ; the o as
defined in the ‘real approach’ is no longer holomorphic. However, it is straightforward to encode the
location of X using a cohomology class which, abusing notation, we can also call ¢. The cohomology
class o can be taken, for instance, to be the element of H'(PT,0(—2)) corresponding to the solution of
the wave equation on Ab* which is zero on X and whose normal derivative is some lapse function. As
a consequence we have that for space-like hypersurfaces the conformal equivalence class of initial data
is encoded in PY together with o. The conformal factor can be similarly encoded by means of the
cohomology class t€ H'(P¥,0(—2)) which corresponds to the solution of the wave equation which is 1
in the desired conformal scale.

The holomorphic approach has the important advantage that the twistor data consists of
effectively free functions of three variables. | have not as yet been able to articulate the constraint and
evolution equations in this context. Insight into this problem would perhaps be obtained from relating
the real and complex approaches; the real and complex approaches should be related in much the same
way as Dolbeault is related to Cech cohomology. However, one may need to use more sophisticated

cohomology classes for ¢ and o in the holomorphic approach such as elements of H'(PJ ,2'(2)).

Light cones and 3: The canonical hypersurface twistor spaces are those where the hypersurface is taken
to be one of past or future null infinity. If the above results were to hold for 3, then the structures ¢
and ¢ would coincide, thus reducing the complexity of the description. Another way to reduce the
complexity of the description is to use light cones as initial data hypersurfaces since then the
information of the location of the hypersurface is encoded simply as the quadric, QC PJ, whose points
correspond to the generators of the null cone, N. (Often, when defining hypersurface twistor spaces for
null hypersurfaces, @ is deleted from PJ. It can be checked that @ embeds holomorphically in PY. 1
am including @ since deleting it only reduces the amount of information available.) There are three
cases to consider; null 3, space-like 3 and a light cone N. Unfortunately, in all these cases half the

initial data is lost. (This is of particular irritation when one hopes to use asymptotic twistor space as



the basic twistor space for the googly construction.)

Space-like 3: The hypersurface twistor space construction encodes, as usual, the intrinsic conformal
structure of 3 and the (trace free part of) the extrinsic curvature which vanishes. However the free
asymptotic data consists of the intrinsic conformal structure of 3 and its third derivative into the space-
time (the first derivative of the electric part of the Weyl curvature at 3). We therefore see that ‘halP

the data, the third derivative of the conformal structure, is lost.

‘Heaven in churck’: This is the colloquial name for the heaven construction based on a light cone. As
in the other heaven constructions, one obtains a space-time M* with ASD Weyl curvature into which
the hypersurface N is embedded. The ‘heaven’, A%, is constructed as the space of holomorphic curves
with S? topology in P and N consists of those curves which intersect the quadric Q in PI. The
hypersurface N acquires initial data from its embedding in A*. However, this initial data is not the
original set. In order to see this, consider the case where the quadric, @, in PJ can be blown down to
a line L in some complex manifold PT with P‘]’\Q:Pﬁé'\ll. This then implies that the ‘heaven in
church’ construction embeds the null hypersurface, N, as a light cone in M* as P can be taken to be
the twistor space for A and [ can be taken to be the curve in P corresponding to the vertex of the
light cone. This means that, according to the induced initial data from AL, N is foliated by «a-planes
and therefore the ~’ed shear vanishes. We therefore see that, roughly speaking, half the data on N is
lost. C. LeBrun has shown that it is always possible to blow down @ when P9I is close to the
hypersurface twistor space of a null cone in Mj; the existence of a regular blowdown only requires
conditions on the normal bundle of @. In order to encode the extra data, one needs to also have the
‘time’ rate of change of the complex structure(€ H'( PT,0)) as the hypersurface is evolved through the

space-time. (This data will, of course, be subject to constraints.)

Null infinity:  Null infinity suffers from the combination of the two above difficulties. Not only does
the hypersurface twistor space fail to encode half the data, but also the second half of the data only
appears as a holomorphic vector valued (0,1)-form, 5, which is the second derivative of the § operator
as the hypersurface is evolved to second order into the space-time. This can be computed as follows.
In the space-time with unphysical metric in which 3 is a finite null hypersurface with normal LA’LA, one

can compute the evolution of the 8 operator to be:
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Here the hypersurface twistor space at I is coordinatized by the coordinates, r* of I itself and the
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spinor valued coordinate Z4 up the fibre of the spinor bundle restricted to 3. Since ¥ vanishes on 9§, 5
vanishes and & has the identical form to the above expression with ¥ replaced by its {irst derivative,
PP in the direction transverse to § (VAA’WB:C:D/E’:.LALA’WOB’C‘D’E’)' This expression is somewhat
messy to write out in terms of the asymptotic shears and their integrals (it depends on integrals of non-
linear combinations of ¢ and 7). However, when &=0, (the ‘googly’ case) the hypersurface twistor
space at J is ordinary flat twistor space, and 5 should be simple. However i havent yet worked it out
as the details turn out to be slightly more problematic than expected. The cohomology class defined
by & should vanish since hypersurface twistor spaces in self-dual space-times based on null cones are all

flat. We should therefore have that § =3 V for some (1,0) vector field V.

A definition of positive frequency for gravitational initial data sets

One of the more striking results in twistor theory is the geometrization of the positive/negative
frequency splitting for ZRM fields that is so important in quantum field theory. This might lead one
to suggest (Mason 1989) that an initial data set should be said to be of positive f{requency if the
correponding hypersurface twistor space could be continued from a neighbourhood of PN with topology
53 xRx5? to a region with topology R*xS? which would be thought of as a deformed analogue of PT*
(so that one can fill in the S®xR factor into a ballR*). (Cf the definition of a positive frequency non-

linear graviton in Penrose 1976.)

One can check what this definition does in linearized theory by taking the expression for
infinitesimal deformation of a hypersurface twistor space in flat space, PT, due to a linearized solution
of the field equations that I obtained in my D.Phil. thesis (see also my article in TN 20).  The
condition would require that the deformation be of positive frequency. This implies that the
contribution from the ASD part of the field is of positive frequency since that appears directly in the
formula. However, the expression for the infinitesimal deformation uses the reflection of the SD part of
the field in the hypersurface. This reflection must be of positive frequency, so that the SD part of the
field must be of negative frequency. As Abhay Ashtekar has pointed out, this is unfortunately
unphysical, since it implies that the helicity of both the ASD and the SD contributions both have
negative helicity, so that one has the tensor product of two —ve helicity graviton Fock spaces in
linearized theory with this definition, instead of the product of the positive with the negative.

This definition may have some interest, since, firstly there are many Lorentzian real initial data
sets which can satisfy this condition (at least in linearized theory), and for such initial data sets one
will have a canonical twistorial definition of positive frequency for backround coupled ZRM fields.
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