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Pochhammer contours in twistor diagrams

Pochhammer contours have a rolc in convolving the anti-
derivative twistor diagram elements in non-projective twistor space. The
technicalities may be of interest in view of RP's suggestions regarding
holomorphic linking. In this note | mostly consider the single box with its
one channel, but the ideas naturally extend to the double box.

The need for Pochhammer contours is seen most directly by
considering the twistor diagram:

where f, g, h, j are of
homogeneity (-4)

This occurs in the interaction of SU(2) gauge fields [TN 23] and so is of
interest in its own right; but it is just as important to see it as the masr

genera/ case of a single-box diagram with integer helicities, from which all
other cases such as

can be derived.

Firstly, consider within the projective diagram calculus the limit

It is infinite, indicating (as is to be expected) infra-red divergence. If we
replace the projective diagram caiculus by the inhomogeneous propagators
[APH, Proc R Soc Land A397 341-374 (1985)] we obtain a new interpret-
ation of (1) as the integral:
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An essential point here is that we must preserve the condition
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Thus any proposed contour for the new integral must yield the correct
“delta-function” answer when applied to the RHS diagram in (4). Similarly,
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we see that the contour must give a consistent result when applied to the
inhomogeneous “Meller scattering” diagram
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We use this necessary condition as a guideline on how to proceed, trying to
construct a contour for (3) which will meet this condition.
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Letf, g, b, j be elementary, so g(z‘) = A2 (R 2)3

The Z and W, integration can indeed be done by analogy with the "Maller”
diagram, the result being essentially
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which then, pursuing the analogy, should be combined with the remaining

{‘(5 x bogy. x«kq)k factor. In the Maller case, this factor is a double pole
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which could be surrounded by an S! . But now we have a branch paint
instead of a pole and there is in fact po contour corresponding to this sl

The Pochhammer contour saves the situation. However, to use it
we have to back-track and first do the WZ integration differently,
abandoning temporarily our Moller guideline. We use a contour which
allows Y, = 0, X" = 0 [the computation may quite conveniently be done by
expanding the WX and YZ factors in inverse powers of k|. The result of the
WL integration is then (essentially)
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i.e. something whose period is the logarithmic expression we had before.
Now this dilogarithm, and the remaining logarithmic factor, can be
successfully combined by performing a Pochhammer contour integration
around the branch point at
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The result of this is (essentially) equivalent to the profective twistor factor

3
@ (A\; T_,{fji ki by

g \3 ﬂ'f//

P

() TR ks
c D X o

and the remaining integration over Y and X yields a finite answer
satisfying the essential differential equation (4). It is of form:
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where this k-independent part is the same as we should have got from the
projective twistor integral
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which is itself the natural regularisation of the divergent limit (2). We must
of course check that the new contour thus constructed is in fact one that
could validly have been employed for the Maller diagram or for the RHS in
(4); indeed this is easy to check by observing how the Pochhammer
integral reduces to the residue calculus when one of the branch points
happens to reduce to a pole.

Further remarks:

1. Although this construction has been motivated by requiring an
extension of the diagram calculus to the (-1,-1,-1,-1) diagram, it should not
be thought of as specific to this diagram. In fact, it is actually more
consistent to use this construction in &7 box diagrams, since it has the
effect of putting all the lines on an equal footing. This comment applies
equally to diagrams like
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which are por infra-red divergent.

2. Subject to some detailed checking and computation, it should be
straightforward to combine this construction with the double-box analysis
and so give a finite evaluation of

and hence of the complete SU(2) interaction [TN 23].
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3. There is more freedom of choice for the contour in (3) than has
been indicated above. The contour described is one in which the
logarithmic factors play a role only through defining branch points
(equivalently, the Euler constant ) plays no role.) But we do have the
freedom to add on pieces of contour which “see” the logarithm and
contribute terms like 4 ‘J
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(Contours do play this role in the integrals which generate mass
eigenstates.) However, one point of interest in the contour as originally
described above is that it seems very likely to be equivalent to a
contour-with-boundary construction; ie. that the amplitude could be
rewritten as
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This accentuates the intriguing similarity to the open string
calculation (TN 27)

4. The diagrams considered here are also particularly relevant to
graviton-graviton scattering; the Feynman sum

can be written (for helicity eigenstates) as the sum of the twistor diagrams
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V{hich have the same singularity structure as the (-1,-1,-1,-1) box diagrams
discussed above.
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