


a o
Q- )
- - ; C




a(r{w)) = w -

(3)

=

Proof: We start by describing a(r(w)) in terms of Tech cohomology. Let (L)

be an open covering of U, and {X;} be an open covering of X-S. Suppose

w = {w )
o --3q
To obtain r(w) we simply regard the o 2. @S having been restricted to
0+ +3q
S. The map « is in three pieces. (i) We construct a g-cochain w in X (with

respect to the covering (¥} U {X}) as follows:

£?

but w ... = 0 if the (q+1)-fold intersection includes any sets from (X;j}.

(ii) We take the coboundary of @:

(6&) =0 because w was a cocycle,
ag. .- ag+,
(5w)iao...aq - wao...aq - wao aq ’
(85) .. =0 whenever the (gq+2)-fold intersection contains

more than one set from (X;}.

(iii) We divide by s. This makes sense because 6w puts W, , oD all
o - -3q

sets Xj N Za and zero on all other (q+2)-fold intersections. But

o -3q
this is exactly the Gech delinition of

£
.
n|—
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where s is thought of as an element of HO({X;};0(-1)).

2. The residue map

If ¢ is a holomorphic form closed on X-S and with a pole of order 1 on § then

Leray's residue theorem [2] says that there exist forms Y and ¢ such that

¢=§EA¢+0 (4)

where wls is closed and holomorphic. ¢|S is called res(p). In terms of
mappings between cohomology groups this residue map comes in two parts.
(i) We think of y as an element of HO9(X-S;QP) and then we use the relative

cohomology exact sequence

(o]

HO(X-S;0P) 5 H'(X,X-S;QP) » H'(X;(P) (5)
to map ¢ to a pair (w,n) (representing c(yp)), where

w € QP (X), n € QP> 9(X-S),

dw =10, Oy = w|x-s
Here (w,n) ~ (0,p) ~ (éﬁA@,Bp) where § is any C® bump function identically 1

on S and with support in an arbitrary neighbourhood of S. (See [3] for the

Dolbeault description of relative cohomology). (ii) We contract the normal

bundle of S in X to a disc bundle

D-S



¥/

Then we squeeze the bump f until (w,n) is supported in D. Finally we

integrate w along the fibres of » (i.e. over the discs) to get

v (w) € QP71 0(S)

In fact this induces a map between the cohomology groups

LI H' (X, X-S;0P) 5 HQ(S;QS"‘)

It can be seen that if p were of the form (4) then r*(c(w)) = ¢|5, as

required.

We can generalise the maps ¢ and = (and specialise p to n = dimX) to

obtain the following commutative diagram (in which the top row is exact).

c forget
HA(X-S;0M) 5 HAY1(X,X-S;0N) — HAt'(X;0n)

.Qn-
HQ(S,QS )

(Here we have also used the facts that on X we have QN = O(-n-1) while on S
we have Q0g"™' = Og(-n)). In particular, therefore, agres = 0. This result
doesn't quite capture the folklore relationship between the dot product and

the residue map, however. So we start again.
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3. Cohomological Evaluation and the Residue Map
Consider

w € HO(X-S,US, U.. US,;0P)
Since X—USj is covered by Uj - X - Sj there are various interpretations of w
by wvarious Cech (Mayer-Vietoris) maps. The simplest case is when m = 2.
Now the Cech map is

HO(X-S,-S,;QP) » H'(X-S,NS,;0P) (6)
and the question (posed in section 2 of [4]) is: which contours in

Hp(X—S,—Sz) "factor through" this interpretation? The answer (see [4]) is

to consider the dual Mayer-Vietoris sequence

5]
*
Lo HP+I(X—S1052) — Hp(X—S,—Sz) — ... (7)

and look for contours in the image of this map.
In Dolbeault terms, the map (6) is

W — w A 36
where 8 ¢ C®(X-S,NS,) and

[ 0 near S,

1 near S,



o

All this is well known (and described in [4]). What was not known was its
intimate relation to the taking of residues. We use the characterisation

that

j p = J res(y)
6

Y Y

(where & is the cobord map) and the following remarkable connection between

Leray's exact sequence and Mayer-Vietoris.

Lemma
Consider the two Leray sequences

Ny 6a
R Hp+](X—S‘ﬂsz) - Hp_‘(Sl—Sz) — Hp(X-Sl) — ...

f [ 1

Ny bp
s Hpy (X=55) — Hp_,(8,-8)) — Hp(X-5,-8,) — ...

Then the composite §pN, is equal to the Mayer-Vietoris connecting

homomorphism a* in (7).

Proof

We use a description in terms of compactly supported differential forms,

whereby classes in Hy(M) are represented by closed elements of

chlmM-k(M) (see [3] for details).



In these terms,

8*(a) - aAdB

where f is C*° on X - §,NAS, and

0 near S, - S,N§,
a-[ |

1 near §, - S NS,

To describe N,, let j: §,-S, - X-§,NS, be the inclusion; then Nala) =

j*(a). The description of §p is a little more involved.

Let D be a tubular neighbourhood of §,-S, relatively compact in X-5,,

with projection map . Let §§ be C®” on X-$,1S,, chosen so that

27

0 near §, - §,N§,
B‘:[

1 in a neighbourhood of X-D
This is a specialisation of our earlier definition.
If [x] e Hp_‘(S‘—SZ), the form x*(x)AdB represents &plx].

The composite thus carries o to 7*j*(a)AdS. Because j, 7: DD is homotopic

to the identity map, there exists an operator H such that
% j*u - u = dHu + Hdu

for all forms u in D. Applying this to «, we find
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x% j*(a)AdB = -aAdB = d(HoAdp)

and since HoAdf has compact support in D-S,, we see that =*j*¥(a)Adf and aAdf

represent the same class in Hp(X-S,—Sz).

Comment s
1. Note that S, could be replaced by a union of closed submanifolds
S,,-..,Sy without any change. It is, however, essential that S, be a

(single) closed submanifold.

2. The promised intimacy between res and a* is given by the formula
l w = [ res(w)
K P

where A e Hp, (X-$,0S,) and k = O\ = §pzx. Note that from the
commutative diagram of the lemma, we have « = a*k if x is in the

image of 4} and the image of « in HP(X—SI) is zero.

3. This explicit characterisation of which contours are 'cochomological'
appears to be new, although widely guessed at. While suggestive, it

stops short of being a complete account of the treatment of twistor

diagram ears. Work is in progress.
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Almost Hermitian Symmetric Manifolds I
Local Twistor Theory

R. J. Baston
Mathematical Institute
St. Giles
Oxford
OX1 3LB
U.K.

January 26, 1989

Abstract

Conformal and projective structures are examples of structures on
a manifold which are modelled on the structure groups of Hermitian
symmetric spaces. We show that each such structure has associated
a distinguished vector bundle (or local twistor bundle) equipped with
a connection (local twistor transport). For projective and conformal
manifolds, this is Cartan’s connection. The curvature of the connection
provides an tensor invariant which vanishes if and only if the manifold
15 locally isomorphic to a Hermitian symmetric space.
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“The Emperor's New Mind", by R. Penrose, is to be published by the
0.U.P. in September 1989, if all goes according to schedule. (Twistor
Theory is mentioned in two footnotes!)
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MORE ON THE TWISTOR DESCRIPTION OF THE KERR SOLUTIONM

In my articlé in TIN27, I outlined the relationship between the
non-Hausdorff twistor spaces arising from NMJW's and LJM's construction
and the geometry of the Kerr and Schwarzschild solutions. The purpose
of this note is to expand one or two points that arose there.

Recall that the space of orbits of the two Killing vectors in the
Kerr solution corresponds to the space of quadratic maps p: X-IRy,

I (with coordinate q) and Ry is the reduced

where X is a copy of CTP
twistor sbace consisting of two Riemann spheres (coordinate w) which
are identified everywhere except for the pairs of points at infinity
and at w = ¥b. In order to determine a map p, we need to know first the
values of w for which the discriminant of the equation w = p(q) vanishes,
and then which point of X is mapped to each of the pair of points at
both w = +b and at w = -b, If we write p in the form

p(@) = fr(a™'- @) + 2,
then the two values of w are 2z + ir and 2z - ir, where z and r are the
usual Weyl coordinates; and p is determined by these and the choice of
one of four possible treatments of the double points. Orbits of the
Killing vectors outside the outer horizon\or inside the inner one are
given by real z and real, positive r, and therefore correspond to pairs
of complex conjugates in the w-plane., Orbits between the two, on the
other hand, have z again real but r purely imaginary; moreover z and r

are constrained so that the points z fir lie between +b and -b on the

real axis.

w/

* (1.h. picture: c.f. Hawking & Ellis pl166)

There are, however, some values of z and r for which we cannot
evaluate the metric directly by following the Ward splitting procedure.
As NMIW and LJM showed in their paper, the method works provided the
points w = 2z + ir and w = 2 - ir are distinct, and are both places

where the two w-spheres are identified.
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In the ordinary outside region I, therefore, the only problems can
occur as r-»0; and in their paper NMJW and LJM found the conditions on
the bundle over Ry for the metric to be well-behaved on the axis of the
Weyl coordinates (which corresponds to®either an axis or a horizon in
the space-time). Similarly, in region III, where the manifold can be
continued analyticly out to\jh there are the two parts of the axis and
the horizon, and, in addition, the ring singularity. In my previous
article, I mentioned the conjecture that this might correspond to a
map p for which the pull-back of the bundle over Ry to one over X 1is
non-trivial. This does in fact turn out to be the case, and it can be
shown that when z =0 and r = a, the pulled-back bundle is Lo @ L_j.

By contrast, in region II we can have values of z and r such that
one of the pair z * ir coincides with one of fb, but the other one

does not, This d%yides region II into four, as follows:

(volumes 2 and 3 are of course

connected since there 1is

rotational symmetry about the

z-axis.)

and these four volumes correspond precisely to the four different maps
p that exist for each pair (z,r), and thus to the four different
possible treatments of the double points b, This means that each pair
of points on the real axis in the w-plane between +b and -b represents
four orbits of the two Killing vectors in the space—time; and if we
consider the analytic continuation of the space-time (putting in the

point at the R = m + b cross-over)

T
T T

T
where regions I' and II' are isometric to I and II in the usual way,
we actually have eight orbits for each pair. (In I and II, we define r
by r = =5i(wi ~ w;); in I' and II', we take r = +%i(w, - w,).)

This raises various questions. If each pair of points (w, ,w.) on

the real axis between +b and -b corresponds to four orbits in the

space-time, why is the same not also true of each pair of complex
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conjugates, or even for each general pair of points, in the w-plane?
Secondly, how can we tell that the space-time is in fact regular across
the hypersurfaces where one of the points coincides with +b or -b; and
what do these surfaces mean geometrically?

The answer to the first question is that in the complexification
of the Kerr solution each (ordered) pair of points does represent four
Killing vector orbits, but not all of these intersect the real slice
which is the space-time. Thus there are four real orbits for pairs in
(-b,+b) on the real axis, two real orbits (one in region I and one in
region III) for pairs of distinct complex conjugates, and none other=-
wise. Trying to find another real orbit for the pairs of conjugates
would be equivalent to interpreting the axis in volume 1 of region II
as a horizon; and this would be incompatible with regularity at the
orbit w;= +b = w,, Outside the outer horizon we are forced to think
of r = 0 as an axis since it is the space-like Killing vector which
vanishes on it. If r = 0 were a horizon then J, the metric on the space
of orbits, would change signature to (+,+) across it.

We can also use the analyticity of the complexification to see
that J is well-behaved across the boundaries between volumes 1,2,3 and 4.
By considering small variations of z into the complex, we can move (z,r)
from one volume to another without z # ir coinciding with ¥b, but with
the explicit effect of changing the treatment of the double points by
the corresponding maps p:X=3Ry. This is made clear by the behaviour of
the open sets covering X on whose overlaps the pull-back of the bundle
over Ry is described by the pull-backs of the patching matrices in the
standard form I described before.

Finally, the boundaries themselves in fact represent the light-
cones of the two points where the axis and the (outer) cross-over

intersect.

References
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Thanks to NMJW.
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On Ward’s Integral Formula for the Wave Equation in Plane Wave

Space-Times
[ T Veuen

In (1], Ward presents an integral formula for the general solution of the wave equation in plane wave
space-times. The purpose of this note is to show howthis relates to the twistor integral formula in flat
space, and to generalize the formula to arbitrary helicity. The generalization of the formula shows how
it is that Maxwell theory satisfies a kind of Huygens principle in plane wave space-times. This suggests
further generalizations of Huygens principle. However, electromagnetic fields in plane wave space-times
provide the only nontrivial example of such generalized Huygen’s principles.

Ward's sntegral formula:
Consider the plane wave space-time with metric:

dsQ:du-dv—Gij(v)dri-dzj ,j=1,2.

For convenience we shall choose a conformal scale such that det(G;;)=1 (all our considerations will be
conformally invariant, so this doesnt involve any loss of generalityﬁ. The hypersurfaces of constant u
are null and support é-function solutions, 6(u), of the wave equation, (this follows from
Ou=0=(V,u)(V®). ' » .

The hypersurfaces of constant ub:u+2r'b,~+F’1bibj (where F”= [G"(v)dv) are related to the
hypersurfaces of constant u by the symmetries

(u, v, ri)—v(u+2rib'-+ﬁ’£jbibj, v, r"+F"jbj),

and so also support é-function solutions of the wave equation. We can form the general solution of the
wave equation by averaging over these é-function solutions:

¢(z):/€b(ub,bi)d26

where ¢ i1s an arbitrary function of its three arguments. When G’.j(v)zéij, (Nat space) the formula
reduces to the Whittaker integral formula.

Relationship with the twistor integral formula
In flat space, this formula can be seen to be the twistor integral formula as follows. Write:

Tl T =C=by+1by, 7y /To=(=b, —1b,.

!
Then ub:zAA WA,fA/WO,?rO:wAfA/ﬂ'O,TrO and we can put:

PA2b=(F o) D(WAT g1 0T TR ardr

so that (ﬁowo,)“QGP(wAT_rA,WA,,TrA)TrAdTrA is a homogeneity degree —2 Dolbeault representative on
twistor space constructed from the characteristic data at 4, &, for the field ¢ as in my TN article [2].

A difficulty with the twistorial interpretation of this formula in the curved case is that the
appropriate complex structure on the space of primed spinors (on which b; are coordinates) shifts as »
varies; wl,(v)/wo,:(:(v):mi(v)bi, the b, are held ‘constant. The complex structure is determined by
the 2-metric Gij(v):ﬁz(imj). It is therefore not clear how one can obtain a global holomorphic
interpretation of the formula in the conformally curved case. (One can, of course, provide a

holomorphic interpretation of the formula on each of the hypersurface twistor spaces based on
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hypersurfaces of constant v; the above formula then answers, to a certain extent the question of how to

identify cohomology classes based on one hypersurface with those on subsequent hypersurfaces.)

Generalization to higher helicity

Plane waves, and in fact all Brinkman waves, have a covariantly constant spinor, aA, aligned along the
generators of the hypersurfaces of constant v. This can be used to raise and lower helicity of massless
fields.

If #(z) is a solution of the wave equation, then goAB:oA‘VAA,oB'VBB,qS(z) is an ASD solution of
the Maxwell equations. All solutions of the Maxwell equations can be put in this form (this follows
from [OA,VAA,,OBIVBB,]:O together with OAIVi,‘,DAB:O from Maxwell’s equations). Similarly, all
solutions of the neutrino equations can be put in the form o? V 4#(z). Higher helicity fields
constructed in this way will not, in general, satisfy the Z.R.M. equations because of Buchdahl

conditions. However, there is a consistent potentials modulo gauge description

—0 ., - B!
¢AA'1- Al T % Vapd(2)

satisfles the {(n—1)-potential equations.

This description leads to the following formula for the general solution of Maxwell’s equations:

wAB(z):/oA’VAA, PV i ®(uy,8,)d%0.

Note that the first V in this expression acts on the free spinor index on the second V as a covariant
derivative. Let 3“' denote the coordinate derivative in the spinframe determined by the null tetrad
{(=dv, n=du, m= m‘-dzi, ﬁl:ﬁl‘-dl‘i where m (v} (v)=G,;(v) and the phase of m, is determined by
the condition that m[iﬁlj]—{»ﬁz[‘-mﬂzﬂ (the dot, :, denotes §/38v). (Note that this last condition
together with det(G;)=1 implies that m;=&m,; for some 7(v).) Then the spin coefficients are just
7ch:0'LA,0AOBOC and ¢,=¢. This formula then becomes, using coordinate derivatives in the

above spin frame:

goAB(r):/{gA'aAA, 080 gy b,) 40040500, B) hb.

For higher helicity, the ‘field’ versions of these formulae fail to make reasonable sense because of
Buchdahl conditions, however the potentials modulo gauge formulae do make sense.

{In the flat case, o=0, write TrA:T'rooA'(?AA;‘ub and 6:(?0)~4(33b¢)((7‘r0)"2ﬁ‘4dTrA). Then the
above becomes the Dolbeault version of the (—4)-homogeneity complex conjugate (dual) twistor

integral formula

szB(z):/%ATrB&AiAdTr
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! . . . .
If we put 67:(#0,)“‘0"1 9 4 41> the formula generalizes the 0-homogeneity twistor integral formula.]
Huygen’s principle

In Penrose (1972) it is demonstrated that a é-function solution of the Maxwell’s equation in a
conformally curved plane wave space-time must also have a ‘tail’. One can produce such solutions
easily using the above ideas. Pick a null hypersurface, u=0. Let 8(u) be the Heavyside function,
f(u)=1 for u>0, and #(u)=0 for u<(. Since any function of u is a solution to the Laplacian, we have

'

in particular that ¢ =uf(u) is a solution. This means that AAA,:OA,OB V, p¢=0,t,0(u) is a vector

otential solution to Maxwell’s equations. The corresponding field is
p q

wap=tatgb(u)+o40p00(u)

which has the tail o 0g068(%).

If, instead, we start with ¢=60(u) we obtain a é-function vector potential, AAA,:oA,LAé(u),
without a tail, and so the field, tpAB:LALBél(u)+ 040p06(u), also has no tail. This would seem to
suggest a generalized form of Huygen’s principle in which it is sufficient to have solutions supported on
light cones or (as we have shown above) solutions supported on a family of null hypersurfaces such that
there is at least one hypersurface in the family normal to each null direction through each point. The
relevant solutions may be a sum of the first n derivatives of §-functions thus leading to a hierarchy of
Huygen’s principles, 36", in which for the nm, only the first n derivatives of é-functions are allowed.

An alternative formulation of Huygen’s principle is that if one poses initial data on some
hypersurface X, then the solution at a point p depends only on the data at the intersection of the light
cone L, of p with £. The generalizations would then seem to correspond to requiring that the solution

at p depends only on the data at L,NX and its first n derivatives. It would be interesting to find an

example of 3>,

Many thanks to George Sparling for discussions.

Penrose R (1972) The geometry of impulsive gravitational waves, papers in honour of J L Synge, ed. L.

O’Raifeartaigh, Clarendon Press, Oxford.

Ward R S (1987) Progressing waves in flat space-time and in plane-wave space-times, CQG 4, 775.

LIM . TN 4 24



20

Hypersurface Twistors |
VAN P

The purpose of this note is to describe some results concerning hypersurface twistors and initial data.
The first results describe the extent to which hypersurface twistor spaces can be used to encode initial
data. In particular I discuss how the situation changes significantly when the hypersurface is chosen to
be a light cone or at infinity, where, roughly speaking, half the data is lost. This fact leads to some of
the difficulties one has with the ‘Googly’. 1 also discuss (the failure of) a twistorial definition of
positive frequency for initial data sets on hypersurfaces.

Encoding initial data

Before one can start using and applying hypersurface twistors, there arises the question of how they can
be used to encode initial data sets for the Einstein vacuum equations. This question can be divided
into two parts. The first part is how the conformally invariant part of the initial data set can be
encoded (this consists of the conformal structure on a three manifold and the trace free part of the
extrinsic curvature). The second part is concerned with encoding the conformal factor of the three
metric and its time derivative, the trace of the extrinsic curvature.

There are (at least) two approaches to encoding initial data into hypersurface twistor spaces. [
refer to one approach as the ‘real’ approach, and the other as the ‘complex’ approach. Let X be the
complexification of a real space-like hypersurface ER in an analytic Lorentzian space-time M. Let PY
be the hypersurface twistor space, and PN be the (real) codimension one hypersurface in PJ whose
points correspond to hypersurface twistors which intersect Z’R. In the real approach one is allowed to
know the location of the hypersurface PN in PJ whereas in the complex approach one is only allowed

PT as a complex manifold and holomorphic structures thereon.

The real approach: This is now relatively well understood, Sparling (1983) LeBrun (TN9,1984&1985),
Penrose (1984), Mason (1985). The real approach is relatively easy to compute with as calculations
can all be performed locally on PN using the Chern-Moser connection. LeBrun showed that PN as a
CR manifold determines X' and the conformally invariant part of the initial data. In Mason (1985) it
was also shown that one could encode the information of the conformal factor if one introduced a
homogeneity degree two (1,0)-form, ¢, which generalizes IaﬂZadZ'a from flat space twistor theory. The
constraint equations could then be articulated as [[aﬂ”]:O. In order to obtain a formula for the
evolution, it was necessary to introduce a further homogeneity degree two (1,0)-form, o, which
generalizes HaﬁZ“dZ’a; o encodes the information of the location of the hypersurface X in M*, in flat
space a point Xaﬁcorresponds to a point of X' iff Xaﬁﬂaﬁ =0. This approach has various defects; from
a twistorial point of view, the data depends on free functions of 5 variables, as compared to 3-variables
for the gravitational field initial data. The characterization of those CR manifolds corresponding to
gravitational initial data sets requires the knowledge of the location of the CP"’s in PN correponding to
points of ER' These are then determined locally using the Chern Moser connection. These facts

substantially limit the applicability of this approach.
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The complez approach: This has not been much studied, but has presumably been around in folklore
for some time. The basic observation is that, using a generalization of the nonlinear graviton
construction, PJ can be seen to be the twistor space of a 4-dimensional conformal manifold, M*, with
ASD Weyl curvature into which 23 is embedded toge.ther with its conformal equivalence class of initial
data (conformal 3-metric and trace free part of the extrinsic curvature), LeBrun (1979). The space A"
is colloquially known as ‘heaven on earth’. In order to capture the conformal initial data set, one must
encode the information of the location of X2 in A%,

When the extrinsic curvature is pure trace, the location of ¥ can be encoded by means of a global
holomorphic homogeneity degree 2 1-form, o, on PT (o vanishes on restriction to those holomorphic
curves corresponding to points of ¥). When the extrinsic curvature is general it appears to be
impossible to encode the location of X in A using local holomorphic structures on PJ; the o as
defined in the ‘real approach’ is no longer holomorphic. However, it is straightforward to encode the
location of X using a cohomology class which, abusing notation, we can also call ¢. The cohomology
class o can be taken, for instance, to be the element of H'(PT,0(—2)) corresponding to the solution of
the wave equation on Ab* which is zero on X and whose normal derivative is some lapse function. As
a consequence we have that for space-like hypersurfaces the conformal equivalence class of initial data
is encoded in PY together with o. The conformal factor can be similarly encoded by means of the
cohomology class t€ H'(P¥,0(—2)) which corresponds to the solution of the wave equation which is 1
in the desired conformal scale.

The holomorphic approach has the important advantage that the twistor data consists of
effectively free functions of three variables. | have not as yet been able to articulate the constraint and
evolution equations in this context. Insight into this problem would perhaps be obtained from relating
the real and complex approaches; the real and complex approaches should be related in much the same
way as Dolbeault is related to Cech cohomology. However, one may need to use more sophisticated

cohomology classes for ¢ and o in the holomorphic approach such as elements of H'(PJ ,2'(2)).

Light cones and 3: The canonical hypersurface twistor spaces are those where the hypersurface is taken
to be one of past or future null infinity. If the above results were to hold for 3, then the structures ¢
and ¢ would coincide, thus reducing the complexity of the description. Another way to reduce the
complexity of the description is to use light cones as initial data hypersurfaces since then the
information of the location of the hypersurface is encoded simply as the quadric, QC PJ, whose points
correspond to the generators of the null cone, N. (Often, when defining hypersurface twistor spaces for
null hypersurfaces, @ is deleted from PJ. It can be checked that @ embeds holomorphically in PY. 1
am including @ since deleting it only reduces the amount of information available.) There are three
cases to consider; null 3, space-like 3 and a light cone N. Unfortunately, in all these cases half the

initial data is lost. (This is of particular irritation when one hopes to use asymptotic twistor space as



the basic twistor space for the googly construction.)

Space-like 3: The hypersurface twistor space construction encodes, as usual, the intrinsic conformal
structure of 3 and the (trace free part of) the extrinsic curvature which vanishes. However the free
asymptotic data consists of the intrinsic conformal structure of 3 and its third derivative into the space-
time (the first derivative of the electric part of the Weyl curvature at 3). We therefore see that ‘halP

the data, the third derivative of the conformal structure, is lost.

‘Heaven in churck’: This is the colloquial name for the heaven construction based on a light cone. As
in the other heaven constructions, one obtains a space-time M* with ASD Weyl curvature into which
the hypersurface N is embedded. The ‘heaven’, A%, is constructed as the space of holomorphic curves
with S? topology in P and N consists of those curves which intersect the quadric Q in PI. The
hypersurface N acquires initial data from its embedding in A*. However, this initial data is not the
original set. In order to see this, consider the case where the quadric, @, in PJ can be blown down to
a line L in some complex manifold PT with P‘]’\Q:Pﬁé'\ll. This then implies that the ‘heaven in
church’ construction embeds the null hypersurface, N, as a light cone in M* as P can be taken to be
the twistor space for A and [ can be taken to be the curve in P corresponding to the vertex of the
light cone. This means that, according to the induced initial data from AL, N is foliated by «a-planes
and therefore the ~’ed shear vanishes. We therefore see that, roughly speaking, half the data on N is
lost. C. LeBrun has shown that it is always possible to blow down @ when P9I is close to the
hypersurface twistor space of a null cone in Mj; the existence of a regular blowdown only requires
conditions on the normal bundle of @. In order to encode the extra data, one needs to also have the
‘time’ rate of change of the complex structure(€ H'( PT,0)) as the hypersurface is evolved through the

space-time. (This data will, of course, be subject to constraints.)

Null infinity:  Null infinity suffers from the combination of the two above difficulties. Not only does
the hypersurface twistor space fail to encode half the data, but also the second half of the data only
appears as a holomorphic vector valued (0,1)-form, 5, which is the second derivative of the § operator
as the hypersurface is evolved to second order into the space-time. This can be computed as follows.
In the space-time with unphysical metric in which 3 is a finite null hypersurface with normal LA’LA, one

can compute the evolution of the 8 operator to be:

= AA’

Z L ,,de

A A' t Cl ! 6
(Z.L)2(~2~,7) WB’C’D’E’ZB 40

BzE,

Q-

:LzAl'iA 0=
]z-L|_2VAA’

Here the hypersurface twistor space at I is coordinatized by the coordinates, r* of I itself and the
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spinor valued coordinate Z4 up the fibre of the spinor bundle restricted to 3. Since ¥ vanishes on 9§, 5
vanishes and & has the identical form to the above expression with ¥ replaced by its {irst derivative,
PP in the direction transverse to § (VAA’WB:C:D/E’:.LALA’WOB’C‘D’E’)' This expression is somewhat
messy to write out in terms of the asymptotic shears and their integrals (it depends on integrals of non-
linear combinations of ¢ and 7). However, when &=0, (the ‘googly’ case) the hypersurface twistor
space at J is ordinary flat twistor space, and 5 should be simple. However i havent yet worked it out
as the details turn out to be slightly more problematic than expected. The cohomology class defined
by & should vanish since hypersurface twistor spaces in self-dual space-times based on null cones are all

flat. We should therefore have that § =3 V for some (1,0) vector field V.

A definition of positive frequency for gravitational initial data sets

One of the more striking results in twistor theory is the geometrization of the positive/negative
frequency splitting for ZRM fields that is so important in quantum field theory. This might lead one
to suggest (Mason 1989) that an initial data set should be said to be of positive f{requency if the
correponding hypersurface twistor space could be continued from a neighbourhood of PN with topology
53 xRx5? to a region with topology R*xS? which would be thought of as a deformed analogue of PT*
(so that one can fill in the S®xR factor into a ballR*). (Cf the definition of a positive frequency non-

linear graviton in Penrose 1976.)

One can check what this definition does in linearized theory by taking the expression for
infinitesimal deformation of a hypersurface twistor space in flat space, PT, due to a linearized solution
of the field equations that I obtained in my D.Phil. thesis (see also my article in TN 20).  The
condition would require that the deformation be of positive frequency. This implies that the
contribution from the ASD part of the field is of positive frequency since that appears directly in the
formula. However, the expression for the infinitesimal deformation uses the reflection of the SD part of
the field in the hypersurface. This reflection must be of positive frequency, so that the SD part of the
field must be of negative frequency. As Abhay Ashtekar has pointed out, this is unfortunately
unphysical, since it implies that the helicity of both the ASD and the SD contributions both have
negative helicity, so that one has the tensor product of two —ve helicity graviton Fock spaces in
linearized theory with this definition, instead of the product of the positive with the negative.

This definition may have some interest, since, firstly there are many Lorentzian real initial data
sets which can satisfy this condition (at least in linearized theory), and for such initial data sets one
will have a canonical twistorial definition of positive frequency for backround coupled ZRM fields.

LeBrun C (1979) More on the Space of Complex Null Geodesics: The Eccentric Case of Three
Dimensions, (TN9) (see also Oxford D.Phil. thesis 1980).

LeBrun C (1984) Twistor CR manifolds and Three-Dimensional conformal Geometry, Trans AMS 284,
2, 601-616.

LeBrun C (1985) Foliated CR manrifolds, J.Diff. Geom. 22 81-96.

Mason LJ (1985) D.Phil thesis (see also articles in TN20,21 and 22).

Mason L J (1989) Insights from twistor theory, to appear in Conceptual problems in Quantum
Gravity, eds A Ashtekar & J Stachel.

Penrose R (1984) On Bryant’s condition for holomorphic curves in CR Manifolds, TN18.

Penrose R (1976) Non-linear gravitons and curved twistor spaces, GRG 7.

Sparling G A J (1983) Twistor Theory and the Characterization of Fefferman’s Conformal Structures,
Pittsburgh preprint (to appear in Phil. Trans. Royal Soc.).
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Nonlinear Schrodinger and Korteweg-de Vries are Reductions of
Self-Dual Yang-Mills

I

L.J.MasonT & G.AJ. Sparlingi, University of Pittsburgh.

Abstract

The non-linear Schrodinger (NS) and KdV equations are shown to be reductions
of the self-dual Yang-Milis (SDYM) equations. A correspondence between
solutions of the NS and KdV equations and certain holomorphic vector bundles on
a complex line bundle over the Riemann sphere is derived from Ward's SDYM
twistor correspondence. Remarkably the twistor correspondence generalizes to the
NS and KdV hierarchies when complex line bundles of higher Chern class are used.
We discuss solitons and inverse scattering.

TAndrew Mellon postdoctoral Fellow and Fulbright Scholar. Present address: The Mathematical Institute,
24-29 St Giles, Oxford OX1 3LB. England.
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Double box diagrams

Introduction: The attempt [TN 27] to perform the direct translation of
Feynman propagators and vertices in general position led to the writing
down of large twistor diagrams too difficult to evaluate at present. These
large diagrams essentially arise as compositions of simpler "box” diagrams.
It therefore looks useful to approach general diagram-bulding by a
detailed study of the simplest such composition, namely the double box.
There are several other reasons for studying it:

(1) the early study of the double box by RP and George Sparling
[PhD thesis, 1974] has remained uncompleted.

(2) it turns out that new light is cast on the crossing symmetry
problem for the smng/e box.

(3) there are applications to electromagnetic and SU(2) amplitudes
of pariicular interest.

The problem: Sparling’'s approach. In what follows we shall use only
the original projective diagram calculus. To begin with we can confine
ourselves to sca/ar (elementary) external states, so that the most general
double box diagram we need consider is

Here ) and N € C cannot be non-zero integers; (but we shall be
particularly interested in studying limits as they approach integer values.)

We now follow Sparling's program for an explicit evaluation. The idea of
this approach is that we first integrate out U, and V", reducing the integral
to one which we can treat by the methods used for the single box diagram

C » G #H
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To do this we first note that there is a contour for

allowing 7 - X' W, = Y, the result of the integral being

1 wW.2 Y. X
COan i) (wz) (o)™ Toarim s $505

where [ (4, My W>
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is the hypergeometric function defined by J.plz 2 (\r2u Y Gz
0

Sparling left the problem at essentially this point. To pursue it to a
conclusion we have to analyse the “period” contours for the UV integral, ie.
contours corresponding to the period structure of the hypergeometric
function. The key point is that only a very particular choice of contour will
yield a result which is actually an samplitude: i.e. a mapping from in-states
and out-states to C. The choice is such that in the result of the UV integral,

Ip("") is replaced by T, (w) = {(l—(iu"\)a(\——ctx“‘”)}i‘,(u) x T (W)
where Ic(“‘) is §) 122"(\* zm")ﬂ’?(\* z)ﬂ-—p

owea 4
C-, %)
The defining feature of this peculiar combination is that the perwd of I ( “)

A ;
about the branch pointat u = 0 is (1— 6“ )( | rCM '43 Ii:["‘)

Explicit contours can be constructed for the WZ, then the YX integrals,
essentially in analogy with the integration of the single box, although this
requires care. The final result is, in closed form
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where Q(u) is the standard quadratic

ef
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formed from the four external states, and r, r, are its roots. Note that
Ir (},r' > l,L)

is analytic at u = 1. This is the feature which ensures that we now have a
genuine amplitude for AB, EF corresponding to in-states; CD, GH to
out-states. Had we chosen another contour at the first stage we should still
obtain a finite integral (at least for AB .. GH in general position) but
without this essential physical property.

Y au
The result can be rewritten as the non-compact integral j T¢ <’\/" w)
0 X (W)
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the representation being valid provided Re )\ > — 1, €Cep 2 — |
] ) [ 2]
in analogy with j WA A (—1 < ReN < | >
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for the single box.

Deductions from the solution:

This allows us Lo nole at once some special cases:

i "N=0 or |\);O = Ic('\;f;"f)g \
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This is consistent with
acting as a two-twistor projection operator for eigenstates of spin 0.

(ii) considering the limits AN
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we find

C k

o oD
_ (b u) " g
~ = 7

by RUw)

& F

which one may check is just the amplitude previously obtained by taking a
so-called "hard contour” for

This means that the double box (with M= 1) supplies a genuine contour
integral involving genuine H!s for the "missing” channel of the sing/e box.
Note that the “hard contour” so-miscalled, is one which treats two of the
external H's as if they were H%s. Such a contour can better be described by
writing the HY as

X
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so that the external state is genuinely an H! and parameter-dependence is
explicitly given by the K, L . The old results on “hard contour” integration
(APH Paysical14A, 157 (1982)) can now be recast as the statement that

ogntain within them all channels for the single box. This provides a new
view of the crossing symmetry problem - closely related to the ideas for
extending the simple box discussed in TN 25.

A different construction for the contour

Having derived a meaningful formula for the result of composing
two boxes, one can ask whether it could be arrived at more naturally. In
fact there are probably several ways: here | will just remark on a contour
construction which works the opposite way to Sparling's. Take the special
case of coincident in- and out-states, i.e. AB = EF, CD = GH. Then we may
first integras® out the erferna/ vertices and obtain:
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One may give explicit coordinates for UDL and V which diagonalise the two
bilinear forms which appear, and in these coordinates it is fairly
straightforward to define a contour in UV space aver which the integration
yields
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This is in agreement with the formula

j Ic(}/f‘“u'ym
(\— W)

which we would obtain in this special case from the contour as constructed
in the Sparling way. It seems clear (but not proved) that the different
constructions do represent the same homology class. Using the second
construction it is hard to generalise to AB, CD, EF, GH in general position.
But it has the advantage of showing explicitly that the limits M=\, [l
may be regarded as corresponding to taking a contour-with-boundary.

Other channels for the double box?

o
(W) du

Putting the result of the integration in the form f J——-———""
o G w)

is particularly useful because it is known that this is just the amplitude
which corresponds to the insertion of a momentvum-space kernel of form

o
k\. p—z

in the appropriate channel. It follows immediately that the amplitudes in
the other channels must be:
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i.e. these formulae must in some sense correspond with

E F &M

respectively. The first of these obviously cannot be a genuine contour
integral as it stands, but there does seem to be a “hard contour” (in the
sense explained above) which effects this correspondence. It is an open
question as to whether there is a contour integral for the second of these
crossed channels. If there is one, it certainly can not be obtained by
integrating out the inner variables first (the required amplitude, regarded
as an analytic function in » and M, has a pole at A+y = 2; but this pole is
cancelled as soon as we do the UV integral in the Sparling manner.)

Looking at the limiting case r = 1, we note that the answers for
the integrals

C D € ¢

must agree, and at first sight it would appear that the contour for the
double-box diagram, if it exists, must be identifiable in this limit with the
contour for the twistor-transformed single-box. However, this turns out to
be incorrect (see below).
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BExtension to external states of non-zero helicity

It is fairly straightforward to use spin-raising and integrating-by-
parts techniques to generalise these results to non-scalar states. The first
example shows that the results are not always what might be expected (by
me, anyway):

e B e €
This means that if a contour exists for the crossed channel, we shall have
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the RHS diagram being non-zero. Hence the agreement of a double box in
its limiting case, and the twistor-transformed single box, will not hold in
general for non-zero external helicities. Acordingly, it requires careful
checking to ensure the validity of the double box originally written down
by RP for Compton scattering:

e

1 !
In fact this follows by operating on the double box with aw 3\/ 2 2 w

We obtain three terms, two of which cancel by virtue of the identity

and leave

This is equivalent to agreement with the Feynman calculation. Similarly we
can show that

is also valid (for the appropriate channel). Hence the extended diagram
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does contain within it the contours for all channels.

In a similar way we can use the double box integral to represent
the "missing” channels for other first-order interactions. At this point we
shall assume that the infra-red divergences may be consistently be
removed by application of the inhomogeneous propagators within the
double-box integral. Then of particular interest are amplitudes for SU(2)
processes (see TN 23). We find for instance that the representation of pure
gauge field self-interaction as a summation over

is fully justified (in this channel).
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Pochhammer contours in twistor diagrams

Pochhammer contours have a rolc in convolving the anti-
derivative twistor diagram elements in non-projective twistor space. The
technicalities may be of interest in view of RP's suggestions regarding
holomorphic linking. In this note | mostly consider the single box with its
one channel, but the ideas naturally extend to the double box.

The need for Pochhammer contours is seen most directly by
considering the twistor diagram:

where f, g, h, j are of
homogeneity (-4)

This occurs in the interaction of SU(2) gauge fields [TN 23] and so is of
interest in its own right; but it is just as important to see it as the masr

genera/ case of a single-box diagram with integer helicities, from which all
other cases such as

can be derived.

Firstly, consider within the projective diagram calculus the limit

It is infinite, indicating (as is to be expected) infra-red divergence. If we
replace the projective diagram caiculus by the inhomogeneous propagators
[APH, Proc R Soc Land A397 341-374 (1985)] we obtain a new interpret-
ation of (1) as the integral:
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An essential point here is that we must preserve the condition
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Thus any proposed contour for the new integral must yield the correct
“delta-function” answer when applied to the RHS diagram in (4). Similarly,

M\
by applying (V\)L—a_:( '3 7w>

we see that the contour must give a consistent result when applied to the
inhomogeneous “Meller scattering” diagram

2 X

We use this necessary condition as a guideline on how to proceed, trying to
construct a contour for (3) which will meet this condition.
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Letf, g, b, j be elementary, so g(z‘) = A2 (R 2)3

The Z and W, integration can indeed be done by analogy with the "Maller”
diagram, the result being essentially

2
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which then, pursuing the analogy, should be combined with the remaining

{‘(5 x bogy. x«kq)k factor. In the Maller case, this factor is a double pole
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which could be surrounded by an S! . But now we have a branch paint
instead of a pole and there is in fact po contour corresponding to this sl

The Pochhammer contour saves the situation. However, to use it
we have to back-track and first do the WZ integration differently,
abandoning temporarily our Moller guideline. We use a contour which
allows Y, = 0, X" = 0 [the computation may quite conveniently be done by
expanding the WX and YZ factors in inverse powers of k|. The result of the
WL integration is then (essentially)
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i.e. something whose period is the logarithmic expression we had before.
Now this dilogarithm, and the remaining logarithmic factor, can be
successfully combined by performing a Pochhammer contour integration
around the branch point at

Y
© Tk
and the newly introduced branch point at -
A3 AS
B ko2 kg
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The result of this is (essentially) equivalent to the profective twistor factor
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and the remaining integration over Y and X yields a finite answer
satisfying the essential differential equation (4). It is of form:
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where this k-independent part is the same as we should have got from the
projective twistor integral
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which is itself the natural regularisation of the divergent limit (2). We must
of course check that the new contour thus constructed is in fact one that
could validly have been employed for the Maller diagram or for the RHS in
(4); indeed this is easy to check by observing how the Pochhammer
integral reduces to the residue calculus when one of the branch points
happens to reduce to a pole.

Further remarks:

1. Although this construction has been motivated by requiring an
extension of the diagram calculus to the (-1,-1,-1,-1) diagram, it should not
be thought of as specific to this diagram. In fact, it is actually more
consistent to use this construction in &7 box diagrams, since it has the
effect of putting all the lines on an equal footing. This comment applies
equally to diagrams like

6 O

which are por infra-red divergent.

2. Subject to some detailed checking and computation, it should be
straightforward to combine this construction with the double-box analysis
and so give a finite evaluation of

and hence of the complete SU(2) interaction [TN 23].
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3. There is more freedom of choice for the contour in (3) than has
been indicated above. The contour described is one in which the
logarithmic factors play a role only through defining branch points
(equivalently, the Euler constant ) plays no role.) But we do have the
freedom to add on pieces of contour which “see” the logarithm and
contribute terms like 4 ‘J

(b’*(ﬂj"z> T |7
¢

(Contours do play this role in the integrals which generate mass
eigenstates.) However, one point of interest in the contour as originally
described above is that it seems very likely to be equivalent to a
contour-with-boundary construction; ie. that the amplitude could be
rewritten as

(29w )W (L)) DFZwWYX

N.Z’}k" w-x’kt)Y-ZP k&, Y. > k*

This accentuates the intriguing similarity to the open string
calculation (TN 27)

4. The diagrams considered here are also particularly relevant to
graviton-graviton scattering; the Feynman sum

can be written (for helicity eigenstates) as the sum of the twistor diagrams
‘ 3

V{hich have the same singularity structure as the (-1,-1,-1,-1) box diagrams
discussed above.
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