An alternative form of the Ernst potential
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One of the strengths of the twistor description of the stationary axisymmetric
solutions of Einstein’s equations is the light it sheds on the relation between the
metric and its Ernst potential. Recall that to represent a solution we have
a bundle £ over a reduced twistor space Ry which consists of two Riemann
spheres Sp and S; (with coordinate w) identified over the set U. The usual
Ward construction gives us a solution of Yang’s equation, usually denoted by J,
which is the metric on the space of Killing vectors. If we impose the conditions
that J be regular on the symmetry axis r = 0 and satisfy detJ = —r? then
Els, = L1® Lo and E|s, = L_, @ Lo where Ly is the tautological bundle, L_;
is the hyperplane section bundle and Lg is the trivial bundle. We can describe
E by means of patching matrices P,g defined on the overlaps of a collection
of open sets U, which cover Ry. If we take Uy C Sp and U; C S, to be
neighbourhoods of w = oo not containing w = 0, and Us C Sy and U3z C S, to
be neighbourhoods of w = 0 not containing w = oo, then
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and E is completely specified by one of the patching matrices between the
spheres, for example by Pp3 which I shall denote by P.

We can construct another solution «(J) from the related bundle «(E). To
obtain «(E), we take the same cover {U,} and the same patching matrix P
between the two spheres, but replace both Py, and Pj3 by the identity. Thus
the restrictions «(E)|s, and «(E)|s, are both trivial; and we can think of the
operations ¢ and ¢~ ! as untwisting and twisting the bundle round the points at
infinity. We can write the corresponding matrix in the form
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then the usual Ernst potential £ is given by £ = f + iyp. NMJW and LIM
(1988) used this as the starting point for encoding the Geroch group in the
twistor picture. :

Instead of twisting and untwisting about w = oo, however, we can do the
same about w = 0. In other words, given our original bundle F, we can define a



new one £ which is also trivial over each of the spheres Sy and Sy, but for which
the patching matrix between them is Py instead of Py3. Since Pyy Is given by
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it has determinant equal to (2w)? and it is actually more convenient to use
P’ = (1/2w) Py to define the new bundle E’. I explained in my article in TN27
what it means for a patching matrix to be adapted to a certain part of the axis
r = 0; if we suppose that P is adapted to an interval of the form {0,a) then
replacing Py with P’ corresponds to dividing the corresponding matrix J by
u? to obtain J', where (in terms of the usual Weyl coordinates (z,7)), u and v
are given by r = uv and z = 4(u? —v?).

Note that there is a certain amount of freedom in the construction of J'.
With a particular choice of the two Killing vectors (X, X2) in the original
space-time (which must be arranged such that X vanishes or isnullon r =0
in the interval (0, a)), we can still transform P by P — BPC, where
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for constants b and c. This will alter J* while leaving J the same. Going in the
other direction, however, there is a unique P’ for each J’ and the only choice
that can arise occurs if the twistor space Ry’ is glued down at w = 0; we then
have to decide to which of the spheres Sy and Sy to assign each of the points at
w=10in Ry.

There is a direct method for passing between J’ and J which is analogous
to changing from Ernst potential to metric. If we choose a Ward splitting { K }
for the patching matrices P4 describing £’ such that
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(where ) is the coordinate on the CP! in PT corresponding to the orbit (x, v))
then, provided we have chosen Sp and S} such that w(u/v) € Sg and w(—v/u) €
51, it follows that
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where H' = K}(0) and H’ = K{(c0) (and so J' = H'(H')™1).

This choice of K} and K} corresponds to a choice of complex structure ¥
(in the Dolbeault version of the Ward construction: see NMIW & LIM (1986)
such that

'I’(é):()at/\:u/v and ‘P(?):Oat/\:—v/u. (1)



This is because, on the pull-back of the set U, to PT, ¥ = K;!'4K,.

It is straightforward to show (from the definition of ¥) that (1) implies we
have chosen H' = (s; s2) and H' = J'fI’,where s; and s, are solutions of the
equations
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with A = u/v and A = —v/u respectively. To go in the other direction, we

replace J/ with «u=2J and choose H = (s, s).
There are two dimensions of freedom in the choice of s and s; in each case;
and in fact defining H’ in this way only implies that K’y and K'; are of the

form
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where a and (3 are constant on A = u/v, and 7y and § are constant on A = —v/u.
Defining H in a similar way gives a similar form for K, and K3. In both cases,
the behaviour of the splitting matrices on the two surfaces in PT is due to the
fact that the only holomorphic functions on PT which are invariant under the
lifts of the two Killing vectors are those which are functions of w alone, where
w 1s related to A by the equation
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When we go in the ‘twisting’ direction (that is to say, from J' to J) we can
actually fix s; and s,, and thus J, completely by considering the behaviour of
K’; and K’; as v — 0. This corresponds to the unique choice of P’ in this
case. On the other hand, the freedom that we have in the other direction also
corresponds precisely to the freedom in the choice of patching matrix P.

Finally, a brief remark on the point of all this. It turns out that if a space-
time has both a symmetry axis and a Killing horizon and is regular at the point
where they intersect, then the patching matrix P has a simple pole at the point
in the reduced twistor space which corresponds to the intersection and which
we can assume to be at w = 0 (see JF & NMJIW 1990). It is straightforward to
show, however, that the ‘untwisted’ patching matrix, P’, is well-behaved on the
real axis near w = 0, and slightly less straightforward to show that its entries
are actually holomorphic in a neighbourhood of this point.
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