A note on causal relations and twistor space

Let M represent Minkowski space, and PN^{I} represent projective null twistor space without I, the twistor line at infinity, regarded as a subset of CP^{3} .

Lemma If $x, y \in M$, then $x \in J(y)$ if and only if there is a null curve in M joining x to y. In addition, $x \in I(y)$ if and only if this curve is not a geodesic.

Proof Consider any null curve starting at x. This stays in J(x) and enters I(x) iff it is not a geodesic. Any point in I(x) may be carried to any other by a Poincaré transformation fixing x. Such transformations do not alter the null or geodesic properties of a curve. \square

If $\gamma:[0,1]\to \mathbf{M}$ is a smooth curve, denote by $\Gamma(t)$ the sky in \mathbf{PN}^{I} of $\gamma(t)$. The curve then gives a ruled surface in \mathbf{PN}^{I} denoted by $\tilde{\Gamma}$ and defined by $\{\Gamma(t):t\in[0,1]\}$

Lemma The surface $\tilde{\Gamma}$ is a developable if and only if γ is null.

Proof A developable may be characterised as a ruled surface whose infinitesimally separated generators intersect (see, for example, Semple and Roth, *Introduction to algebraic geometry*, pp 255 ff). Now, neighbouring generators of $\tilde{\Gamma}$ are the skies of neighbouring points on γ and hence correspond to null separated points; they therefore intersect. \Box

Using these two, and observing that $\tilde{\Gamma}$ has self intersections only when two points of γ are null separated, one can show that the following two results hold.

Proposition $x \in I(y)$ if and only if $X \cup Y$ is the boundary of a developable with no self intersections. \square

Corollary Let Σ be a ruled surface in \mathbf{PN}^{I} with boundary $X \cup Y$. Then $x \in I(y)$ if and only if Σ can be deformed into a developable. \square

From these results we see that the causal nature of the interval between two points in M admits of a fairly direct interpretation in PN^I in terms of its projective geometry. Note that it is important that we do not use PN, as this would allow us to find a (non self-intersecting) developable with boundary $X \cup Y$ for any pair of points not lying on a single null geodesic.

Robert Low