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Twistor translation of Feynman vertices

Progress has been made in the programme of translating general
Feynman diagrams into twistor diagrams. The advance comes through
observing the Oreaking of conformal mvariance in elementary Feynman
amplitude calculations (that is, conformal symmetry-breaking even before
renor malisation considerations come in). An example shows this explicitly:

Consider the Feynman diagram
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where dashed lines indicate scalar fields and solid lines spin-1/2 fields.
Such a diagram arises in the standard model from the presence of terms in
the interaction Lagrangian of form
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The Feynman diagram as drawn indicates the integral
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considered as a functional of the external fields, where (b,) ¢z are of
positive frequency and all the others of negative frequency.

We now choose particular fields, specified by corresponding twistor
| -functions:
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Space-time calculation then yields the result of the Feynman integral,
namely '
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This is I"/J -dependent although scale-invariant (of homogeneity 0 in I'(f )

Hence we know that any proposed twistor diagram for this amplitude must
involve '} in some way. Twistor diagrams therefore cannot hope lo give a
manifestly conformally invariant description of amplitudes in general: they
can however make the dependence on nk explicit.

We can now arrive at the same conclusion by a different and more general
argument. Note that the relation
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means that any proposed twistor representation of the Feynman integral
above must be related via a differential operator with a representation of
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Now there are many possible representations of this 7‘) integral. One of

them is 95;
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and this one allows the inverse of this differential operator to be applied,
at least formally. This yields a candidate twistor diagram for the Feynman
integral being studied, namely
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But is there a contour for this diagram yieiding the Feynman amplitude?
NO. Proof by contradiction: suppose there were, then we could use it Lo
effect an integration by parts of the qS dxagram But now take the limit as

¢,(x) moves towards the constant field, i.e the elementary state based at | =
If the integration by parts were valid, this limit would be zero identically.
But this limit must in fact be the integral
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which is non-zero in general.

Clearly this argument is not specific to this diagram and can be applied in
general in situations where there are more than two in- or out-fields.

But suppose we allow ourselves to add further clements to the integral
which involve I explicitly in the singularity structure. Then the argument
above can no longer be used to yield a contradiction. The limiting case of
the constant field cannot taken since the contour may pinch in this limit.

In fact there is a natural candidate for the form to be taken by these new
elements, namely boundarses ar mfiaity, i.e. boundaries on subspaces
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Note that such boundaries are "invisible to” the V, [ operators, which is
why it 15 permissible to add them without upsetting the essential
differential equation satisfied by (2 ).

In fact one finds explicitly that

can be integrated to yield the correct amplitude Similarly we may consider

the channel in which the spin-1/2 fields have are of opposite frequency
types and {ind a correspondence



We are now faced with the prablem, familiar from earlier work, of finding
a twistor interpretation of the crossing relations. In TN 28, analysis of the
double-box led to the observation that the diagram
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contamned all channels for first-order (ﬁ scattering within it; similarly for
the diagram
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with respect to Coulomb scattering.

We might rephrase this observation in terms of asserting the existence of a
skeleton dragram formed solely out of pole singularities, defining a twistor
differential form which when combined with an appropriate collection of
boundary prescriptions can yield the amplitude in any of the crossing-
related channels.

Skeleton diagrams can be given for all the (2 > 2) processes hitherta
studied. We now notice that the diagrams (3) and (4) above can be
regarded in this sense as different realizations of the skeleton diagram



It has not yet been checked in detail that boundary-contours exist to yield
a// channels, but this seems very probable.

Attempted generalizations are now readily suggested. In particular, it
appears that the process involving three "Yukawa interaction” vertices has
a correspondence with a skeleton diagram given by

| 1 b
1 W
A . _,J -

(This is certainly valid for some channels).

The significance of this process lies in regarding the external fields as test
functions for the product of three Feynman propagators. Thus, looking at
this diagram in all possible channels is equivalent to giving the full
information of a general Feynman diagram vertex. Composition of these
vertices into general Feynman diagrams should then be possible.

At present there is no indication of how the boundaries corresponding 10
each channel may be defined (they are certainly not uniquely defined.)
Thus we are still faced with the problems of definition that have always
arisen in diagram theory. However, this skeleton diagram concept at last

suggestls a [ramework which can include everything known so far and has
the potential for systematic generalization.
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Clearly we shall in general have to modily the definttions to mtroduce
mhomaogeneous poles and boundaries - possibly also logarithmic factors
rather than boundaries - if we are to incorporate the inhomogeneity which
eliminates infra-red divergences at first-order level Note that to make the
boundaries al infinidy inhomogeneous would imply introducing a mass
parameter.

There are then at least three directions which the existing results suggest
for investigation:

(1) establishing the general vertex for Yukawa and ﬁ" interaction, and then
studying Feynman loop diagrams within these theories. Can the
imntroduction of inhomogeneity eliminate ultra-violet divergences
systematically?

{2) generalising these higher order calculations to massless electroweak
theory. As may be seen from the Coulomb “skeleton”, the feature that
seems to be emerging is that gauge fields appear in the boundary
specifications and not in the skeleton. This suggests the hopeful picture of a
twistor calculus in which gauge fields are all absorbed into geometry in a
manifestly gauge invariant way. In particular, for pure gauge [ield
scattering the skeleton should virtually disappear, leaving only the
specification of a bounded region of integration. This might give the closest
link between diagram theory and the conformal field theory picture.

{3) The primary significance of the Yukawa interaction in the standard
model s that 1t provides the mechanism for massive fields to arise. The
essential 1dea is that the scalar field is, in the zeroth order, the constant
field. The contours for the twistor diagrams we have written down will in
general “pinch” as the external field tends towards the constant field (ie.
the elementary state based at I*" ) but by studying this limit it may be
possible to find a modification of twistor geometry at I which allows the
massive fields 1o emerge as a finite limit. The massive fields have already
been described by twistor integrals involving inhomogeneous pofes at
infinity and it should be possible to relate these to the suggested
formalism.

The combination of all three directions of generalization would amount to a
general theory for translating Feynman diagrams into twistor diagrams.

A FPH.





