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An alternative form of the Ernst potential

James Fletcher

One of the strengths of the twistor description of the stationary axisymmetric
solutions of Einstein’s equations is the light it sheds on the relation between the
metric and its Ernst potential. Recall that to represent a solution we have
a bundle £ over a reduced twistor space Ry which consists of two Riemann
spheres Sp and S; (with coordinate w) identified over the set U. The usual
Ward construction gives us a solution of Yang’s equation, usually denoted by J,
which is the metric on the space of Killing vectors. If we impose the conditions
that J be regular on the symmetry axis r = 0 and satisfy detJ = —r? then
Els, = L1® Lo and E|s, = L_, @ Lo where Ly is the tautological bundle, L_;
is the hyperplane section bundle and Lg is the trivial bundle. We can describe
E by means of patching matrices P,g defined on the overlaps of a collection
of open sets U, which cover Ry. If we take Uy C Sp and U; C S, to be
neighbourhoods of w = oo not containing w = 0, and Us C Sy and U3z C S, to
be neighbourhoods of w = 0 not containing w = oo, then

am (% 0). ran (O 0)

and E is completely specified by one of the patching matrices between the
spheres, for example by Pp3 which I shall denote by P.

We can construct another solution «(J) from the related bundle «(E). To
obtain «(E), we take the same cover {U,} and the same patching matrix P
between the two spheres, but replace both Py, and Pj3 by the identity. Thus
the restrictions «(E)|s, and «(E)|s, are both trivial; and we can think of the
operations ¢ and ¢~ ! as untwisting and twisting the bundle round the points at
infinity. We can write the corresponding matrix in the form

)
W):(fﬁ/ i)

! 7

then the usual Ernst potential £ is given by £ = f + iyp. NMJW and LIM
(1988) used this as the starting point for encoding the Geroch group in the
twistor picture. :

Instead of twisting and untwisting about w = oo, however, we can do the
same about w = 0. In other words, given our original bundle F, we can define a



new one £ which is also trivial over each of the spheres Sy and Sy, but for which
the patching matrix between them is Py instead of Py3. Since Pyy Is given by

_{ 2w 0 2w 0
= (5 0)P (5 1)

it has determinant equal to (2w)? and it is actually more convenient to use
P’ = (1/2w) Py to define the new bundle E’. I explained in my article in TN27
what it means for a patching matrix to be adapted to a certain part of the axis
r = 0; if we suppose that P is adapted to an interval of the form {0,a) then
replacing Py with P’ corresponds to dividing the corresponding matrix J by
u? to obtain J', where (in terms of the usual Weyl coordinates (z,7)), u and v
are given by r = uv and z = 4(u? —v?).

Note that there is a certain amount of freedom in the construction of J'.
With a particular choice of the two Killing vectors (X, X2) in the original
space-time (which must be arranged such that X vanishes or isnullon r =0
in the interval (0, a)), we can still transform P by P — BPC, where

1 0 1 ¢
B—(bl) and C_<01)

for constants b and c. This will alter J* while leaving J the same. Going in the
other direction, however, there is a unique P’ for each J’ and the only choice
that can arise occurs if the twistor space Ry’ is glued down at w = 0; we then
have to decide to which of the spheres Sy and Sy to assign each of the points at
w=10in Ry.

There is a direct method for passing between J’ and J which is analogous
to changing from Ernst potential to metric. If we choose a Ward splitting { K }
for the patching matrices P4 describing £’ such that

K%:(: ?) atA:—-(v/u)andKéz'((l) :) at A =u/v

(where ) is the coordinate on the CP! in PT corresponding to the orbit (x, v))
then, provided we have chosen Sp and S} such that w(u/v) € Sg and w(—v/u) €
51, it follows that

—y2 N
s=m (0 )

where H' = K}(0) and H’ = K{(c0) (and so J' = H'(H')™1).

This choice of K} and K} corresponds to a choice of complex structure ¥
(in the Dolbeault version of the Ward construction: see NMIW & LIM (1986)
such that

'I’(é):()at/\:u/v and ‘P(?):Oat/\:—v/u. (1)



This is because, on the pull-back of the set U, to PT, ¥ = K;!'4K,.

It is straightforward to show (from the definition of ¥) that (1) implies we
have chosen H' = (s; s2) and H' = J'fI’,where s; and s, are solutions of the
equations

1 =1 ’ N—1 / .
Ors + TR (Y= ro = A8, )s = 0 (2)
l n—-1 / n-1 ’ _
d,s + 1+/\2(/\(J) oJ + (I8, )s = 0 (3)
with A = u/v and A = —v/u respectively. To go in the other direction, we

replace J/ with «u=2J and choose H = (s, s).
There are two dimensions of freedom in the choice of s and s; in each case;
and in fact defining H’ in this way only implies that K’y and K'; are of the

form
1\”2.—_(: g) and K'3;(g :)

where a and (3 are constant on A = u/v, and 7y and § are constant on A = —v/u.
Defining H in a similar way gives a similar form for K, and K3. In both cases,
the behaviour of the splitting matrices on the two surfaces in PT is due to the
fact that the only holomorphic functions on PT which are invariant under the
lifts of the two Killing vectors are those which are functions of w alone, where
w 1s related to A by the equation

w= g(rl —A) +2.2) (4)

When we go in the ‘twisting’ direction (that is to say, from J' to J) we can
actually fix s; and s,, and thus J, completely by considering the behaviour of
K’; and K’; as v — 0. This corresponds to the unique choice of P’ in this
case. On the other hand, the freedom that we have in the other direction also
corresponds precisely to the freedom in the choice of patching matrix P.

Finally, a brief remark on the point of all this. It turns out that if a space-
time has both a symmetry axis and a Killing horizon and is regular at the point
where they intersect, then the patching matrix P has a simple pole at the point
in the reduced twistor space which corresponds to the intersection and which
we can assume to be at w = 0 (see JF & NMJIW 1990). It is straightforward to
show, however, that the ‘untwisted’ patching matrix, P’, is well-behaved on the
real axis near w = 0, and slightly less straightforward to show that its entries
are actually holomorphic in a neighbourhood of this point.

References

NMJW & LIM Nonlinearity 1 73 - 114 {1988) JF in TN 27 14 - 16 JF & NMJW
in ‘Reviews in Twistor Theory’ ed RIB & TNB (1990)
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Structure of the jet bundle for manifolds with conformal
or projective structure

Let G be a complex semi-simple Lie group and P<G a Lie subgroup. To each
P-module E there corresponds a homogeneous vector bundle E, over G/P, which
is just Gx E modulo the equivalence relation (g,e) ~ (gp,p~'e) for geG,p€P and
e € E. We write

E= GXPE.

It is an interesting exercise (see [2]) to check that the the bundle of infinite jets,
JE, associated with this homogeneous bundle is itself homogeneous:

JE=GxpJE

where JE may be obtained as the fibre of JE over the identity coset PEG/P.

It is interesting and useful to see the extent to which this goes through in
case G/P is replaced by a more general structure. So let M be an arbitrary
complex holomorphic manifold equipped with a P-principal bundle G. Then M
is the fibrewise quotient G/P and we have an appropriate generalisation of the
above situation. Corresponding to the homogeneous bundles above are sems-
homogeneous bundles which are constructed in exactly the same way: If E a
P-module then we have F := G xp F.

A section f of E corresponds to a function F,

F.:G—-F,

such that
pF(gp) = F(g) for g€ Gandpe P.

Such functions F' will be said to be semi-homogeneous. The space of such E-
valued semi-homogeneous functions is itself a P-module in the obvious way. This
has a P-submodule of semi-homogeneous functions which vanish to order k + 1
on ¢gP for x = gP an arbitrary point of M. The quotient P-module shall be
denoted JXE. Points of the bundle of k-jets associated to E, over z, correspond
to points in gPxJ*E modulo the equivalence relation (g, F) ~ (gp,p 'F) for
peP and F € JFE. Thus we see that the bundle of k-jets, J*E, has an
underlying P-structure as in the homogeneous case above. However in this more

general setting the inducing P-module may vary from point to point of M. We
could write

J*E= G xp J;PE
to describe this. With the same notation the bundle of infinite jets is given by
JE= g Xp Jng,

where, for each gPe G/P, JpE is the projective limit over k of the Jg"PE.‘
The dual version of this proceeds as follows. Let D denote the space of
differential operators from E-valued functions on ¢ to C-valued functions on G.

When restricted to act on semi-homogeneous functions, F, D gains a P-module
structure: For D € D, pD is defined by

[PD]F(g) := DF(§)s=pp = Dp ' F(gp™")
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where g € G, p€P and on the extreme right hand side F(gp~!) = F(g) is to be
regarded as a function of §. D has a P-submodule of operators which act as zero
on semi-homogeneous functions. Denote by X(E) the quotient P-module. Let
Oam denote the C-valued semi-homogeneous functions on G, i.e., the functions
constant on each fibre gP, g € G. For some fixed z € M, let T, < Ox be the
subspace of functions which vanish over z. Denote by II.X(E) the P-submodule
of X(E) which consists of elements of X(E) left multiplied by functions in Z,.
Since X (E) is naturally a Ox-module it is clear that Z,.X(E) is a P-submodule
of X (E). Once again we can form the quotient module which we shall denote
VI(E) This P-module is filtered naturally by order of the operators involved;
write Vi -(E) to denote the submodule consisting of operators of order no greater
than k. Since each element of Vi .(E) determines a map

J*E — C,

and X(E) consists of all non-trivial operators on E-valued semi-homogeneous
functions it is at once clear that Vi .(E) is precisely the vector dual of JFE. It is
easily checked that it is also dual as a P-module. Evidently then,

(J*E) = G xp Vi gp(E)

with notation understood to be as above.

While this and the dual version first mentioned provide a description of the
jet bundle the situation is less than ideal. Even at the level of k-jets, since
the inducing module is point dependent there is little scope for reducing the
problem of finding differential operators of order < k to a finite dimensional
one. Nevertheless without more structure this is probably as far as one can go.
However in many instances such structure is readily available ....

For example if M™ has a conformal (or projective) structure then one obtains
a principal P-bundle, G, where P is a particular parabolic subgroup of Spin(n+2)
(SL(n+1) respectively). Moreover the bundle § comes equipped with a canonical
notion of horizontality called the normal conformal (resp. projective) Cartan
connection. We shall see that in either of these cases the jet bundle is almost as
simple to describe as in the homogeneous case. The Cartan connection (which
will always refer to the normal version) is usually described by a 1-form 9 which
satisfies (where p and g are the Lie algebras of P and G respectively):

(1) 9, : T,G — g is an vector space isomorphism Vq € G.
(i) 9(X;) = X if X* is the Killing field corresponding to X€ p.
(i) Ry = Ad(p~')Y, where R, describes the right action of peP on G.

as well as some curvature conditions. Note that if we write g* := 97'(g) then,
regarding the vector fields g* as differential operators, (iii) is equivalent to

[XY]" = [X*, Y]

for arbitrary X€ p and Y€ g. We can, in the obvious way, extend 9~ to act
on the tensor algebra, ® g := @, ®*g. The result of this is a space of special
differential operators on G which will be denoted by 2/(g*). There is a natural
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filtration of U(g*) induced from the grading of the tensor algebra @ g; i.e., U(g")
is the image of @5, ®'g. We note that U(g") is strictly contained in D, in fact
Ur(g") is finite dimensional.
The left U(g*)-module
U@g ) E"

may be thought of as a special class of differential opertors from E-valued func-
tions on ¢ to C-valued functions on . As operators restricted to semi-homo-
geneous functions we may consider the action of P (as described above for all
of D) on this space. Now we may regard this U(g*)-module as a p*-module (or
equivalently a p-module) by restriction and it is readily verified that this agrees
precisely with the P-action (at least treating the elements of U(g*) ® E* as dif-
ferential operators on semi-homogeneous functions). Thus U(g*) ® E* is closed
under this P-action and so, given property (i) of 9, is an ideal candidate to replace
D.

U(g") ® E* has a P-submodule of operators which annihilate all semi-homo-
geneous functions. Let X(E) be the quotient and Oum.X(E) consist of elements
of X(E) left multiplied by functions from Ops. Then Oa. X(E) is also a P-module
and, for any fixed z € M, has Z,.X(E) as a P-submodule. Again we form the
quotient and denote the resulting P-module V,(E). With similar reasoning to
that in used in the V,(E) case it is not difficult to see that V,(E) = (J,E)* and
that

G xpV,pE =(JE) .

In this construction also, the inducing P-module varies on M. Thus at first glance
it would seem that we are no better off than with the construction that began
with D. In fact, however, we now have a considerably more rigid structure as
consideration at the level of k-jets reveals.

Write Dy < D to mean the subspace of differential operators of order <
k. Corresponding to this X(E) will inherit a filtration, by f(k(E) say. In the
approach that begins with all differential operators, this is the key P-module
leading to the construction of the dual k-jet bundle. The problem is that Xk(E)
is infinite dimensional and we know nothing about its structure. If a conformal or
projective structure is present then corresponding to this one has X;(E), where
the filtration of X(F) by the X(E) arises from the filtration of /(g*) by Us(g").
Now, in contrast to Xix(E), Xi(E) is finite dimensional. In fact X(E) looks
. Just like certain Verma modules which arise in the homogeneous case with some
modification due to the curvature of the Cartan connection. Thus, although the
structure of Vi .(E) varies over M, the variation involved is a relatively minor
detail involving the actual value of the curvature at each point. The important
point, however, is that we have a natural bundle epimorphism from a finite
dimensional semi-homogeneous bundle onto (J*E)* :

G xp Xi(E) — (J*E)".

There is an immediate application of this result. Suppose there is a P-module
monomorphism

it H = Xu(E).
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Then this induces an invariant homomorphism of the corresponding semi-homo-
geneous bundles:

g Xp H* — g Xp Xk(E)

and thus a vector bundle homorphism,
G xp H* — (JEE)™.
Dually then, we have a bundle homomorphism
J*E — H,

that is, a differential operator; here H is of course § xp H. Beginning with
irreducible modules H, finding injections such as ¢ above is straightforward (in
principle at least) and just involves finding certain vectors in X(FE) which are
annihilated by a special subalgebra of p. (These are called mazimal vectors.) It
1s thus easy to see that for irreducible H and any k there are a finite number of
differential operators which arise in this fashion. Indeed beginning also with E
irreducible, the resulting operators are, in a real sense, analogues of the tnvariant
operators in the homogeneous case (as in [2,1]) or composites thereof.
Examples of applications of these ideas can be found in [3].
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The geometry of the space of null geodesics

R. J. Low
Mathematics Department
Coventry Polytchnic
Priory Street
Coventry CV1 5FB
U. K.

Abstract

The topology and geometry of the space of null geodesics N of
a space-time M are used to study the causal structure of the space-
time itself. In particular, the question of whether the topology of N is
Hausdorff or admits a compatible manifold structure carries informa-
tion on the global structure of M, and the transversality properties
of the intersections of skies of points tell whether the points are con-
jugate points on a null geodesic.

in J. Math. Phys. (1989) 30 809-811
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A note on causal relations and twistor space

Let M represent Minkowski space, and PN! represent projective null twistor
space without I, the twistor line at infinity, regarded as a subset of CP3.

Lemma If z,y e M, then z eJ(y) if and only if there is a null curve in M joining
z to y. In addition, z ¢ I(y) if and only if this curve is not a geodesic.

Proof Consider any null curve starting at z. This stays in J(z) and enters I(z)
iff it is not a geodesic. Any point in I(z) may be carried to any other by a
Poincaré transformation fixing z. Such transformations do not alter the null or
geodesic properties of a curve. O

If v : [0,1] — M is a smooth curve, denote by I'(¢) the sky in PN! of
v(t). The curve then gives a ruled surface in PN! denoted by I" and defined by

{T(t) : te[o,1]}

Lemma The surface I' is a developable if and only if v is null.

Proof A developable may be characterised as a ruled surface whose infinitesi-
mally separated generators intersect (see, for example, Semple and Roth, Intro-
duction to algebraic geometry, pp 255 ff). Now, neighbouring generators of r
are the skies of neighbouring points on v and hence correspond to null separated
points; they therefore intersect. O

Using these two, and observing that T' has self intersections only when two
points of v are null separated, one can show that the following two results hold.

Proposition z ¢I(y) if and only if X UY 1is the boundary of a developable with
no self intersections. 0

Corollary Let ¥ be a ruled surface in PN! with boundary X UY. Then z¢I(y)
if and only if ¥ can be deformed into a developable. O

From these results we see that the causal nature of the interval between
two points in M admits of a fairly direct interpretation in PN! in terms of its
projective geometry. Note that it is important that we do not use PN, as this
would allow us to find a (non self-intersecting) developable with boundary X UY
for any pair of points not lying on a single null geodesic.

WA\Q
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Harmonic morphisms and mini—-twistor space.

A harmonic morphism is a map ¢:M -+ N of Kiemannian maniftolds M,N with
the following property: f.N + R is harmonic iff pof:M + R is. As a concrete
example, take M to be R® with coordinates %,y,z2 and N to be R* with
coordinates u,v. The map ¢ is defined by giving u(x,y,2z?, v(X,y,2)
satisfying

Vay = V2y = 0 = VueVv ; 1VWI2 = [Vy(R .

In this case Baird and Wood [BWI tind that ¢ is locally detined by a
holomorphic curve in TPl, the tangent bundle of the complex projective
line. They go on to use this tact to classitfy globally detfined harmonic
morphisms in this case, and also in the cases $% 4 surface and H3 -+
surface.

Since TP! is the mini~twistor space of R¥ it is natural to wonder
what, if anything, is the relation to twistor theory of this property of ¢.
In the case when dim M = 3, dim N = 2, the inverse images of points of N
give curves in M. One purpose of this note is to observe that

the defining
property of harmonic morphisms is equivalent to the condition that this
congruence of curves be a geodesic and shear-free congruence.

Now TPl is the space of geodesics of the flat metric on R¥ and so a
congruence atf geodesics corresponds to a 2-real parameter surtface in TPL.
As one might anticipate from the Kerr theorem, there is a mini-Kerr theorem
that

this surface is a holomorphic curve iff the congruence is shear-free.

In particular, this leads to an explicit formula for such congruences: if
the generator is
L= 1l-ax o + ata O - 1la-a) o
Ltoo bz 1taa  ox 1o oy

then a(x,y,z) is given implicitly by
f(x(l-a?) + iy (l+a®) + Z2az,a) = 0 or in epinors Fx%a,au,ac) = 0

for arbitrary holomorphic t or holomorphic and homogeneous F (a tormula
similar to this is in (BW].

As Baird and Wood remark, to find solutions ot (1) was set as a
problem by Jacobi. This now falls into the class of non-linear
differential-geometric problems solvable by twistor theory.

I am gratetul to John Wood and Paul Baird for telling me about
harmonic morphisms.

BW Baird and Wood 1988 Math. Ann. 280 5/9-603
see also Baird 1987 Ann. Inst. Fourier, Grenoble 37 135%-173
Baird and Wood Harmonic morphisms and conformal folialions by
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Department of Mathematics Research Report no.Z2-1989
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Twistors and SU(3) monopoles

Hitchin [1] has shown that SU(2)-monopoles of charge k onIR® are equivalent

to algebraic curves (spectral curves) of genus (k-1)?%, satisfying certain

constraints, lying in the minitwistor space TP!. Now TP! = ((u, v):
u, v éeR%" |jul = 1, u.v = 0) so it may be identified with the space of
oriented lines inIR?. Also TP' fibres over IP! and we may take coordinates
(n,¢) on TP! where ¢ is a coordinate onIP! and n is a fibre coordinate.
There 1is aAreal structure on TP!; in terms of the above coordinates it is
T:(n,¢) » (-n/T%, -1/7), but it is easier to think of it as just reversing
the orientation of oriented lines inIR®. We define line bundles LY of
degree 0 over TP! by letting L* be the bundle with transition function
exp(tn/<).

For each SU(2)-monopole there is just one associated spectral curve
S in TIP!. It satisfies:-

(i) $ is compact and has equation n* + al(g‘)nk"l + ... +a.() =0
where each a, is a polynomial of degree 2}
(ii) L? is trivial over §S; or equivalently (since deg L2 = 0),
H°(S,L%) = 0
(iii) S is preserved by the real structure r
(iv) S has no multiple components
(v) (nondegeneracy condition) H°(S,L%(k-2)) = O for 0 < t < 2

A parameter count gives the dimension of the moduli space of charge
k SU(2)-monopoles as 4k-1.

These results have been extended to the case of SU(n)-monopoles with
symmetry broken to U(1l)x...x U(l) by Michael Murray [3] who showed that
such monopoles were generically determined by n-1 spectral curves

(satisfying certain constraints) in minitwistor space.
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We may also consider monopoles with nonmaximal symmetry breaking
i.e. symmetry broken to a nonabelian subgroup. In particular consider
SU(3) monopoles with symmetry to U(2). As SU(3) is the QCD gauge group
such monopoles may be of particular physical interest.
We now have only one spectral curve (as opposed to two curves for
U(l) x U(1l) symmetry breaking). This curve satisfies conditions (i) and
{(iii) above; however the condition that there is a nontrivial element of
H°(S,L?) is replaced by the requirement that H°(S,13(1,1)) = O (for the
charge 21 monopole). Parameter counting, using results from algebraic
geometry about the dimension of linear systems on algebraic curves, |
suggests that the charge 21 moduli space shouid have dimension = 121-1; in
fact the charge 2 moduli space should have dimension precisely 11 (or 8
once we fix the centre of the monopole inIR®). This agrees with a result
of E. Weinberg [5] (Weinberg includes an S! phase to get 12 parameters).
Further investigations concerning nondegeneracy conditions suggest
that the 7-dimensional space of SU(2) charge 2 monopoles should arise as a
boundary of the 8-dimensional space of SU(3) minimal symmetry breaking
charge 2 monopoles. Now it is known [2] that SU(2) charge k monopoles are
equivalent to triples.
(T,,T,,Ty) of k x k-matrix valued functions on [0,2] satisfying:-
(1) T,%(t) = -T, (v)
(2) T (2-t) = -T, (¢)
(3) T, is analytic on (0,2) with simple poles at
t =0,2

%) %%L - [Tz’Ta] and cyclically (Nahm's Equations).

(5) The residues of the T, at t = 0,2 give an irreducible

representation of SU(2).
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The pole at t=2 corresponds to the bundle L? being trivial over
the spectral curve S. Condition (2) reflects the quaternionic nature of
SU(2) (= Sp(l)). 1In the SU(3) case, therefore, we should drop these
conditions. The resulting modified system of Nahm's equations may be
solved (in the charge 2 case) explicitly using S0(3) and SU(2) symmetries
and Jacobi elliptic functions. The modull space of centred SU(3) charge 2
monopoles is then an 8-dimensional space with the SU(2) moduli space as a
boundary. The moduli space includes a spherically symmetric monopole and a
3-parameter family of axlsymmetric monopoles; this agrees with results of
Ward arrived at via twistor theory [4]; (Ward considers wncentred mounopoles

and so gets a 6-parameter family of axisymmetric solutions).

A.S. Dancer
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Twistor translation of Feynman vertices

Progress has been made in the programme of translating general
Feynman diagrams into twistor diagrams. The advance comes through
observing the Oreaking of conformal mvariance in elementary Feynman
amplitude calculations (that is, conformal symmetry-breaking even before
renor malisation considerations come in). An example shows this explicitly:

Consider the Feynman diagram

*i»/%i}&

where dashed lines indicate scalar fields and solid lines spin-1/2 fields.
Such a diagram arises in the standard model from the presence of terms in
the interaction Lagrangian of form

%W, (49)

The Feynman diagram as drawn indicates the integral

(Acdy ¥, 000 DN le-y) diy)d, (3¢ ()

considered as a functional of the external fields, where (b,) ¢z are of
positive frequency and all the others of negative frequency.

We now choose particular fields, specified by corresponding twistor
| -functions:
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Space-time calculation then yields the result of the Feynman integral,
namely '
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This is I"/J -dependent although scale-invariant (of homogeneity 0 in I'(f )

Hence we know that any proposed twistor diagram for this amplitude must
involve '} in some way. Twistor diagrams therefore cannot hope lo give a
manifestly conformally invariant description of amplitudes in general: they
can however make the dependence on nk explicit.

We can now arrive at the same conclusion by a different and more general
argument. Note that the relation

jf (MLA*J (Dx"f‘%ﬂ Ya ($)>D‘: (X-9) ¢, (9) $,(y) ¢q‘3>

- j Ao MU0 2) B L) G er) Wy (%)

means that any proposed twistor representation of the Feynman integral
above must be related via a differential operator with a representation of

the integral Sl“x (b‘_(x) cﬁg(x) qS‘ (%) d,(r-) tf)lec)

) ) NS
Now there are many possible representations of this 7‘) integral. One of

them is 95;
d)a( H/

.....

and this one allows the inverse of this differential operator to be applied,
at least formally. This yields a candidate twistor diagram for the Feynman
integral being studied, namely
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But is there a contour for this diagram yieiding the Feynman amplitude?
NO. Proof by contradiction: suppose there were, then we could use it Lo
effect an integration by parts of the qS dxagram But now take the limit as

¢,(x) moves towards the constant field, i.e the elementary state based at | =
If the integration by parts were valid, this limit would be zero identically.
But this limit must in fact be the integral

jot"" d, (x) @, (x) ) (2) b ()

which is non-zero in general.

Clearly this argument is not specific to this diagram and can be applied in
general in situations where there are more than two in- or out-fields.

But suppose we allow ourselves to add further clements to the integral
which involve I explicitly in the singularity structure. Then the argument
above can no longer be used to yield a contradiction. The limiting case of
the constant field cannot taken since the contour may pinch in this limit.

In fact there is a natural candidate for the form to be taken by these new
elements, namely boundarses ar mfiaity, i.e. boundaries on subspaces

P
§¥2 20} of jwy = o\
represented in diagrams b On~er~~—O
p 8 YL‘MANAZ N v

Note that such boundaries are "invisible to” the V, [ operators, which is
why it 15 permissible to add them without upsetting the essential
differential equation satisfied by (2 ).

In fact one finds explicitly that

can be integrated to yield the correct amplitude Similarly we may consider

the channel in which the spin-1/2 fields have are of opposite frequency
types and {ind a correspondence



We are now faced with the prablem, familiar from earlier work, of finding
a twistor interpretation of the crossing relations. In TN 28, analysis of the
double-box led to the observation that the diagram

¢l 43 "
contamned all channels for first-order (ﬁ scattering within it; similarly for
the diagram

¢’A‘s y

ta bae

with respect to Coulomb scattering.

We might rephrase this observation in terms of asserting the existence of a
skeleton dragram formed solely out of pole singularities, defining a twistor
differential form which when combined with an appropriate collection of
boundary prescriptions can yield the amplitude in any of the crossing-
related channels.

Skeleton diagrams can be given for all the (2 > 2) processes hitherta
studied. We now notice that the diagrams (3) and (4) above can be
regarded in this sense as different realizations of the skeleton diagram



It has not yet been checked in detail that boundary-contours exist to yield
a// channels, but this seems very probable.

Attempted generalizations are now readily suggested. In particular, it
appears that the process involving three "Yukawa interaction” vertices has
a correspondence with a skeleton diagram given by

| 1 b
1 W
A . _,J -

(This is certainly valid for some channels).

The significance of this process lies in regarding the external fields as test
functions for the product of three Feynman propagators. Thus, looking at
this diagram in all possible channels is equivalent to giving the full
information of a general Feynman diagram vertex. Composition of these
vertices into general Feynman diagrams should then be possible.

At present there is no indication of how the boundaries corresponding 10
each channel may be defined (they are certainly not uniquely defined.)
Thus we are still faced with the problems of definition that have always
arisen in diagram theory. However, this skeleton diagram concept at last

suggestls a [ramework which can include everything known so far and has
the potential for systematic generalization.
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Clearly we shall in general have to modily the definttions to mtroduce
mhomaogeneous poles and boundaries - possibly also logarithmic factors
rather than boundaries - if we are to incorporate the inhomogeneity which
eliminates infra-red divergences at first-order level Note that to make the
boundaries al infinidy inhomogeneous would imply introducing a mass
parameter.

There are then at least three directions which the existing results suggest
for investigation:

(1) establishing the general vertex for Yukawa and ﬁ" interaction, and then
studying Feynman loop diagrams within these theories. Can the
imntroduction of inhomogeneity eliminate ultra-violet divergences
systematically?

{2) generalising these higher order calculations to massless electroweak
theory. As may be seen from the Coulomb “skeleton”, the feature that
seems to be emerging is that gauge fields appear in the boundary
specifications and not in the skeleton. This suggests the hopeful picture of a
twistor calculus in which gauge fields are all absorbed into geometry in a
manifestly gauge invariant way. In particular, for pure gauge [ield
scattering the skeleton should virtually disappear, leaving only the
specification of a bounded region of integration. This might give the closest
link between diagram theory and the conformal field theory picture.

{3) The primary significance of the Yukawa interaction in the standard
model s that 1t provides the mechanism for massive fields to arise. The
essential 1dea is that the scalar field is, in the zeroth order, the constant
field. The contours for the twistor diagrams we have written down will in
general “pinch” as the external field tends towards the constant field (ie.
the elementary state based at I*" ) but by studying this limit it may be
possible to find a modification of twistor geometry at I which allows the
massive fields 1o emerge as a finite limit. The massive fields have already
been described by twistor integrals involving inhomogeneous pofes at
infinity and it should be possible to relate these to the suggested
formalism.

The combination of all three directions of generalization would amount to a
general theory for translating Feynman diagrams into twistor diagrams.

A FPH.
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