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H-Space—a universal integrable system?
L.J.Mason

The following speculations have not been fulfilled yet (and may never) but I feel that the concrete

aspects of the ideas are of interest and the various relations involved are intriguing.

Motivation. There is a large forest of integrable systems. Richard Ward, amongst others, has pointed
out that many, if not indeed most integrable systems are reductions of the self-dual Yang-Mills
equations. This observation isn’t just a question of bookkeeping, it gives a substantial insight into the
theory underlying these equations as the inverse scattering transform for these systems can be
understood as a symmetry reduction of the Ward construction for solutions of the self-dual Yang-Mills
equations {Woodhouse & Mason 1988 and Mason & Sbarling 1989 & preprint, the symmetry reduction
can, however, be somewhat nontrivial—see in particular Woodhouse & Mason in which non-Hausdorff
Riemann surfaces play an essential role).

Two gaps in the story are as follows. Firstly that there appears to be genuine difficulties to
incprporating the KP and Davey-Stewartson equations. There is little difficulty in incorporating
integrable systems into some kind of twistor framework if the inverse scattering transform is realised by
means of the solution of a Riemann-Hilbert problem. However the inverse scattering problem for the
KP equations is more subtle and requires the solution of a ‘non-local Riemann-Hilbert problem’. This
gap is particularly irritating in view of the theoretical importance that the KP equations have acquired
with its relations to the theory of Riemann surfaces etc. The second gap is that there appears to be
little role for the self-dual vacuum equations and its twistor construction, RP’s nonlinear graviton
construction—this, it should be pointed out, is not based on the solution of a Riexﬁann—llilbert problem

cither. Ilowever | should like to make the following conjecture:

Conjecture. The KP and Davey-Stewartson equations are reductions of the self-dual

Einstein equations.

The circumstantial evidence is as follows. (The self-duality equations are taken to be concerned with

space-times with metric of signature (2,2).)

Lemma 1. KP can be obtained in the limit as n—oo of the SL(n) self-dual Yang-Mills
‘equations reduced by two orthogonal null translations,

(This extends the results of Mason & Sparling 1989.)

Lemma 2. (Hoppe, J.) The Lie algebra of the area preserving diffeomorphism group of a surface

2, SDiff(Ez) can be approximated arbitrarily closcly.by that of SL(n} as n—oo.
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Lemma 3. The self-dual Einstein equations are equivalent to the self-dual Yang-Mills
equations reduced by two orthogonal null translations with gauge group SDif f(£3).
(This extends the results of Mason & Newman 1989)0

Remark. If it were the case that SL(n) were a subgroup of SL(co) = SDiff(E£?) then these results
would imply that all 2-dimensional integrable models obtainable as reductions from the self-dual Yang-
Mills equations (at least by translations). Hence the title of this note and the question mark.
However, my current opinion is that SL(n) is only a subgroup of SDiff(E’) for n=2. This still
yields a reasonable class of integrable systems and certainly the more famous ones such as the KdV,

nonlinear Schrodinger and the sine-Gordon equations.

Proof of lemma 1. I shall use the presentation of the KP hierarchy due to Gelfand and Dicke. See for
instance Segal & Wilson in the proceedings of the I.LH.E.S for a description of these ideas. The
equations of the KP hierarchy are the consistency conditions for the existence of a solution ¢ to the

following system of linear partial differential equations

(8¢2"(Q2)+)¢’=0» (8:3“(03)1-)1/’:0’ Tt (8cr—(Qr)+)¢=0; :

where (Q"), is an r*® order O.D.E. in the z variable, Q. =(0) +ru(@,) " +---+w, and
u(z,ty,t;,++) is the subject of the KP hierarchy equation and w, is some function which will be
determined in terms of u by the equations. The notation is intended to indicate that the ordinary
differential operators (Q") , are the differential operator part of the pseudo-differential operator Q
raised to the r*® power where Q=0,+u(8,)" '+ (lower order) and where (3.) "} is a formal
pseudo-differential operator defined by the relation (8, YU =£(0,) + }: ( a.) f(8 ) Ik

The basic KP equation is the equation on u(z,t;,1;) that follows ftom the consistency conditions
for (0‘2 - (Qg)+ ¥ =0 and (8‘3— Q% +)¥ =0 alone. The evolution in the higher time variables are
symmetries of the basic equations (and each other). If one imposes invariance in the n** time variable
t, then the reduced system is referred to as the nt generalized KdV hierarchy (n =2 gives the
standard KdV hierarchy and n = 3 the Boussinesq).

The basic idea is that the operators (Q"), can be thought of as infinite dimensional matrices
acting on LQ(R) where z is a coordinate on R. One can approximate this by nxn matrices by
imposing a symmetry in the n** time variable since then (Fourier transforming v in the ¢, variable) we
have (Q")+¢ = Ay aud we consider only ¢ lying in the n-dimensional solution space of this equation,

represented, say, by v and its first (n — 1)-derivatives with respect to z. With this reduction we have:

Zu 0 1 0n_3 0 0 0 0
C 2w e . 0 0
(3,2“(Q2)+)¢= 0 reduces to 8‘2—- ' 1 +A . b=
. . . 0 1 0 0
(2—n) ] 1 0
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u: u 0 l 0n—4 0 0 0 0
, oo , R | i 0 0
—_ = t - =
(B, = (@) 4 )¥=0reducesto 9, — = . EN o |[*7°
0 0 1 0

where 0 is the r xr zero matrix. This matrix linear system is linear in the spectral parameter A and
can be seen to be the linear system of a reduction of SDYM with 2 null orthogonal traunslation

symmetries.[]

Note: A large gap in the above discussion is that the linear system is shown to be contained within the
SDYM linear systems, but I have not characterised those SDYM solutions with the 2 orthogonal null

symmetries that give rise to the nth KdV system.

Proof of Lemma 2. These ideas are standard. dne presents the Lie algebra of the area preserving
diffeomorphisms of a torus by using the area form as a symplectic form and representing vector fields
corresponding to elements of LieSDif f(E?) by thelr Hamiltonians. Let 8, and 0, be ‘angular
coordinates on the torus such that the area form is d, , df,, then a basis for the Hamiltonians is

H 4 = exp{27i(A;8, + Ay0,)} where 4 = (A;,A;) € ZxZ. The Lie bracket is the Poisson bracket:
{HyHg)=(AAB)H,, g where (4,B)=A,B;-A;B,.

For SL(N) we use a basis for the Lie algebra constructed using a pair of mattices U, V satisfying the

quantum plane relations: UV = (VU where ¢(¥=1. An explicit representation has U diagonal with

powers of {( down the diagonal U,'J- = Ci6'-j and V a shift matrix V;; = 6‘“ +1 mod NY:
A basis for the Lie algebra of SL(N) is then furnished by ’

Ardy A A
T,=N¢ 2 Ulvie,

The commutators are then given by:

A, B

[T4Tpl=Neoin—gr—=T4, p 2 (AAB)Ty4p
N—oo

which gives the same commutation relations as above for HA in the limit as N—o0.0

Proof of lemma 3. This is, to a certain extent, a corollorary of the results in Mason & Newman (1989).
In that paper it was shown that if you take the algebraic relations obtained by imposing four
translational symmetries on the sell-dual Yang-Mills equations and take the gauge group to be the

group of volume preserving diffeomorphisms of some 4-manifold then, roughly speaking, one obtains
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the self-dual vacuum equations. Lemma 3 can be reformulated so as to be a special case of this.
The self-dual Yang-Mills equations on R* with metric ds? = dudy + dvdz (signature 2,2) are the
integrability conditions on connection components (4,,4,,4,, Av) in the Lie algebra of the gauge

group for the the linear system
(B, +A,+A0,+A))v=0 {8,+A,+ A0, + A4}y =0.

When G is SDif f(£?) the connection components are all vector fields on E? (depending also on the
coordinates on R‘). Impose two translational symmetries on the R* so that the connection components
depend only on the quotient variables on R?. The linear system then reduces to the system
(V o+ AW, ¢ =0={V,+ AV }¥ where the V’s are vector fields on R*xT% These vector fields
preserve the natural volume form on R?xIL? and so determine elements of the Lie algebra of the
volume preserving diffeomorphism group. The linear system is precisely that for the self-dual Yang-
Mills equations with 4 translational symmetries and gauge group the volume preserving
diffeomorphisms of R? x £2.

Concretely introduce coordinates (p,q) on £? so that the area form is the symplectic form dp , dq,
and suppoee the symmetries to be in the z and y directions so that the variables depend only on the
coordinates (u,v) on R?. Represent the vector fields A_on £2? by their Hamiltonians denoted h_ etc..
The field equations are

(O +A+AA, B, +4,+ A4 =0

The first implication of this is that A2[A:,Au] =0 so that we can choose coordinates on L2 so that

A,=aq and Auzap. The term proportional to A implies thuzaphu,

h,= aqg for some g = g(u,v,q,p). The final equation yields in terms of g

so that h, = ('3pg and

2 2 y
which is Plebanski’s second heavenly equation.O]
Thanks to George Sparling for discussions.
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