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More on harmonic morphisms

I wish to correct two errors in my last Twistor Newsletter article, to
make some observations which might make that article clearer, and to
describe what I think is a new way of looking at the Kerr theorem
appropriate to Riemannian twistor theory (though in this last connection
see Hughston and Mason CQG b5 (1988) 275).

The two errors are as follows: firstly, the generator of the
congruaence should have baen

L= 1-0F > + ot@ D - 1@ b ()
t+ad bz Ltad dx ltad Oy

(this expression had some bars missing before)
and secondly a(x,y,2z) is actually given implicitly by

f(x(1-a?) + 1y(1+ax®) - 2az,a) = 0 (2)

(this expression had gsome signs muddled before).

In the interest of clarity, I should slso have added that:

- 1f a = ut+iv then
V3y = 93y = 0 = VueVv ; |Vui{2 = |[Vy|z

ie the complex function aix,y,z) obtasined from (2) defines the
harmonic morphism,

- afx,y,z) 1s constant along L as given by (1),
- for a given constant value of a, the real and imaginary parts of (2

each define a plane and L is then tangent to the line of
intersection of the two planes.

There is an 'elementary' interpretation of (2) as tollows: a line in
R? is given by an equation of the form
r~a = b I
where a is a unit vector and b is orthogonal to a.

Parametrise the unit vectors with the complex number «a according to (1),
then (3) can be written

x(1-a®) + iy(1+a®) -2az = @ 4)

where B parametrises the Argand plane orthogonal to a. Now (2) 1s
equivalent to teking B to be an arbitrary holomorphic function of o ie the
'intercept' is an arbitrary holomorphic function of the ‘direction', both
understood as complex variables. When this function is linear, the



congruence is a 3-dimensional picture of the Kerr congruence and is
sketched in Baird and Wood Math.Ann. 280 (1988) 579-603

'Harmonic morphisms' 1s also the answer to the question ‘what do you
get from the Kerr theorem in Riemannian twistor theory (when there are no
shear-free geodesic congruences)?' To see this, take a homogeneous
holomorphic twistor function F(Z*) and intersect the zero-set of F with a
line in twistor space which 1is 'real' in the sense appropriate to
Riemannian twistor theory. This gives

F(a+bl{,-b+al,1,0) = 0 (5)

writing (1,{) for the n-spinor (rather than (1,o) which I used at the
beginning). Here a and b are complex coordinates on R* and the metric is

ds? = dad&® + dbdb (6).

Solving (5) gives a function {(a,b,&,b) with

L+ cg& = 0; ¥ - g = 0 n
o8 - S db >a

from which it follows that { has vanishing Laplacian and null gradient in
the metric (6):

DR 4+ DB = 0; DLOL + DG =0 (8)
dads dbdb badE  dobdb

If we think of { as the stereographic coordinate on the sphere, then
(8) is easily seen to be the conditions for (5) to define a harmonic
morphism from R4 to S§*. However, (7) {s stronger in that it implies that,
as well as defining a harmonic morphism, { is constant on flat 2-planes.
Note that if { satisfies (8) then so does any holomorphic function of {. In
this sense, { defines a family of holomorphically-related harmonic
morphisms constant on flat 2-planes, ona of which satisfies (7).

For the converse suppose that n satisfies (8) and is constant on flat
2-planes. Define { by
on + CQ% =0 80 that also 2dn - {dn =0
o8& o bb da

then 1t follows from the conditions on n that { is a holomorphic function
of n and so in turn satisfies (7) and (8).

To summarise, a family of holomorphically-related harmonic morphisms
from R4 to S2 which are constant on 2-planes defines and is defined by &
holomorphic function in twistor space. This can be called ‘'the Riemannian
Kerr theorem’'.

(This view of the Kerr theorem arose in discussions with Henrik
Pedersen.) :
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