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A quasi-local mass construction with positive mass
A. Dougan and L.J. Mason

In this note we propose a pair of modifications to Penrose’s quasi-local mass construction that not only
lead to a delinition of a real 4-momentum and mass of the gravitational and matter fields within a two
surface ¥, but also have the property that the momentum can be proved to be future pointing when the
2-surface can be spanned by a three surface on which the data satisfies the dominant energy condition
(the proof also requires that the 2-surface be convex). The new definition reproduces the good
properties of the quasi-local mass construction—it gives zero in flat space, and the correct results in

linearized theory and at infinity.

Motivation: In Mason (1989) (see also Mason & Frauendiener 1990) the components of the angular
momentum twistor associated to a 2-surface ¥ are interpreted as the values of the Hamiltonians that
generate motions of a spanning 3-surface 36 whose boundary value on ¥ are ‘quasi-Killing vectors’
constructed out ol solutions to the 2-surface twistor equations. (The value of the Hamiltonians that
gcncréte motions of 3 in space-time depends only on the boundary value of the deformation 4-vector
field on ¥.)

For Penrose’s quasi-local mass construction (Penrose 1982) the quasi-Killing vectors are
constructed out of the four linearly independent solutions of the twistor equation w(’: = (wé‘,...,uf).
They are given by KAA = K"’ﬁw(’:rg' where K9P = K(®P) is a matrix of constants and ¥ 41, 2T€ the 7-
parts of the w(’: defined by de|y= —l'ﬂ’A;dIAA'H. The value of the Hamiltonian that generates
deformations of 3 with boundary value K44 on ¢ is obtained by inserting this decomposition of KA

into the Witten-Nester integral:

AA' : - Ay A
H(KAR) = A, zKP = —.f,mf’wﬂdx[, AT

KAA’

This expression depends on and its decomposition into spinors. By use of

!
d{ - ivrA,dxAA ) = d¥w = RBAwB it can be seen that this is equivalent to Penrose’s original definition.

The new momentum definition: In order to define a real 4-momentum we must have a definition of
real ‘quasi-transla.tions’ at §. Two definitions follow. The equation 3'7rA, =0, resp. (’WA; =0 (where
&= m*V,, § =mV,, m? = 404" and m? = 044’ with oA'oA, AA the outward tesp. inward null
normal etc.) in general has just 2 linearly independent solutions on ¥, since this equation can be
thought of as the condition that LT is a holomorphic (resp. anti-holomorphic) section of the spin
bundle $ ., on the sphere ¥ where the éomplcx structure on ¥ is that induced from the space-time
metric, and that on S, arises from the space-time spin connection. Generically SA’ is Lrivial as a

- . ) . . ! ’ 4 Y1y .
holomorphic vector bundle on ¥ and so there exists precisely two solutions (ﬂ":‘)‘,,ﬂ'l ) = ‘K%;. (‘"This type

A
of idea is used in KP'[’s 1983 definition of quasi-local charges for Yang-Mills.)



We can now define a ‘quasi-translation’ to be a 4-vector field on ¥ of the form

— A'=4
KAA:—KAAITA/‘A

where the KAA' are constants. This can now be inserted into the Witten-Nester form to obtain the
corresponding values of the momenta. The quasi-local momentum can thus be defined (modulo

irrelevant overall real constants) as:
pad = f hdxd  doAd
b {
The mass. In order to define a mass, we must be able to define a constant ¢ 4 g 80 that we can define:
1 _ pad'pBE
m'=P P EABEA/E:.

The natural definition is 5515’ = rﬁzrg:c"'al. It follows from axﬁ: =0 that 3e4'E - 0, so that the

EAIBI are holomorphic and global functions on the sphere and hence, by Liouville’s theorem, constant.

Flat space, linearised theory and infinity. In flat space, the ¥ s are guaranteed to be the restriction to
¥ of the constant spinors, since they certainly satisfy the equation, and the solutions are unique. The
integrand therefore vanishes giving the correct answer Pdd' = 0. In linearized theory one can again,
with a little work, see that the right answer is obtained (one needs to integrate potentially awkward
terms by parts in order to see that they vanish). Asymptotically at space-like infinity, the T 40’8 are
the asymptotically constant spinors (again because the asymptotically constant spinors satisfy BH’A. =90
and therefore span the solution space) and the expression reduces to the Witten-Nester expression for

the ADM energy. At null infinity there is the subtlety that only one of the definitions gives the correct

asymptotic spin space depending on whether one is at future or past null infinity.

Positivity. It is essential for a good definition of momentum that it should be future pointing. The
following argument is an adaptation of ideas in Ludvigsen & Vickers (1983) based on Witten (1981).

/ /
In the following we show that P% is positive, and write, for simplicity, T = w?q,.

Theorem. The quasi-local momentum pY defined by the OXA, =0 (resp. 3”,«1’ =0)is
positive whenever p < 0 (resp. p' > 0).

Proof. Let A, be some field defined on a 2-surface ¥ spanned by some non singular space-like 3-
surface 3. Let I,(¥) be the integral of the Witten-Nester 2-form A = —iXAdAA,AdxAA' over ¥, In
spin coeflicients and the GHP formalism this may be written: '



1,(8) = f {3 (Ohge + A ) = X(BA,. + 92 )}dS (1).
b4

Consider first the system of equations dr ,, = 0:
Iry +px =0, Ir i+ F'xy =0 (2,3).
Then using (2) and integrating by parts we get:
I.($)=- f (p'Fomy + pFy7,1)dS (4)
b g

Since the Sen-Witten equation on J6 consists of an elliptic system of two first order P.D.E’s, we may

find a solution T satislying the boundary condition

. (5)

on f. In general 7, will differ from #_, on ¥. Denote this difference by:

We now relate I.(¥) to Iy (¥):
[+ () = }( {71(0F g+ p7,) = 7B, + 7y ) ]S
b
- f {71007 + o7, = 7o(B7 4 p'rg) dS
h g
= f {‘/:rl( — pﬂ'ly + pill) - pilil' — p'fowo,)}ds
f
= f {_ P RoT g — PR T+ p(Fy — #)(F o~ rl,)}dS
h
=Ix(?)+ f pYYdS
b
Where we have used equations (2), (4), (5) and (6) and an integration by parts. As is well known
(Witten 1980) for matter satis{lying the dominant energy condition Iy (¥) > 0 so that whenever p <90,
Ix($) > 0. This implies that P44 s future pointing as required.
Considering next the equation 51/1, =0, an analogous argument to the one above but now with

W= M., 88 boundary conditions for the Sen-Witten equation will show positivity whenever p’ > 0.0

The conditions p < 0 or p’ > 0 are the condition that the two surface is convex, i.e. that there should



be no indentations. This will be satisfied by a wide class of 2-surfaces in a generic space-time.

Angular momentum: One can define more general quasi-Killing vectors using local twistors, (wA,wA,)
restricted to ¥ satifying either b(wA.xA,) =0or a(uA,tA,) =0 where & and & act according to the local
twistor connection. These equations are guaranteed to have just four independent solutions generically
since as before these are 0 equations whose solutions are holomorphic sections of a holomorphic vector
bundle on the sphere 3. Generically the holomorphic vector bundle will be trivial and so there will be
just four linearly independent solutions. These can be used to define quasi-Killing vectors, and quasi-
conformal Killing vectors as in Mason & Frauendiener which then give rise to ‘conserved’ quantities by
substitution into the Witten-Nester form. (When R,, =0 on ¥, it makes consistent sense to set
x =0 in such a local twistor and then we can retrieve the quasi-local momentum above within the

scheme.)

Many thanks to K.P.Tod for useful discussions,
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H-Space—a universal integrable system?
L.J.Mason

The following speculations have not been fulfilled yet (and may never) but I feel that the concrete

aspects of the ideas are of interest and the various relations involved are intriguing.

Motivation. There is a large forest of integrable systems. Richard Ward, amongst others, has pointed
out that many, if not indeed most integrable systems are reductions of the self-dual Yang-Mills
equations. This observation isn’t just a question of bookkeeping, it gives a substantial insight into the
theory underlying these equations as the inverse scattering transform for these systems can be
understood as a symmetry reduction of the Ward construction for solutions of the self-dual Yang-Mills
equations {Woodhouse & Mason 1988 and Mason & Sbarling 1989 & preprint, the symmetry reduction
can, however, be somewhat nontrivial—see in particular Woodhouse & Mason in which non-Hausdorff
Riemann surfaces play an essential role).

Two gaps in the story are as follows. Firstly that there appears to be genuine difficulties to
incprporating the KP and Davey-Stewartson equations. There is little difficulty in incorporating
integrable systems into some kind of twistor framework if the inverse scattering transform is realised by
means of the solution of a Riemann-Hilbert problem. However the inverse scattering problem for the
KP equations is more subtle and requires the solution of a ‘non-local Riemann-Hilbert problem’. This
gap is particularly irritating in view of the theoretical importance that the KP equations have acquired
with its relations to the theory of Riemann surfaces etc. The second gap is that there appears to be
little role for the self-dual vacuum equations and its twistor construction, RP’s nonlinear graviton
construction—this, it should be pointed out, is not based on the solution of a Riexﬁann—llilbert problem

cither. Ilowever | should like to make the following conjecture:

Conjecture. The KP and Davey-Stewartson equations are reductions of the self-dual

Einstein equations.

The circumstantial evidence is as follows. (The self-duality equations are taken to be concerned with

space-times with metric of signature (2,2).)

Lemma 1. KP can be obtained in the limit as n—oo of the SL(n) self-dual Yang-Mills
‘equations reduced by two orthogonal null translations,

(This extends the results of Mason & Sparling 1989.)

Lemma 2. (Hoppe, J.) The Lie algebra of the area preserving diffeomorphism group of a surface

2, SDiff(Ez) can be approximated arbitrarily closcly.by that of SL(n} as n—oo.
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Lemma 3. The self-dual Einstein equations are equivalent to the self-dual Yang-Mills
equations reduced by two orthogonal null translations with gauge group SDif f(£3).
(This extends the results of Mason & Newman 1989)0

Remark. If it were the case that SL(n) were a subgroup of SL(co) = SDiff(E£?) then these results
would imply that all 2-dimensional integrable models obtainable as reductions from the self-dual Yang-
Mills equations (at least by translations). Hence the title of this note and the question mark.
However, my current opinion is that SL(n) is only a subgroup of SDiff(E’) for n=2. This still
yields a reasonable class of integrable systems and certainly the more famous ones such as the KdV,

nonlinear Schrodinger and the sine-Gordon equations.

Proof of lemma 1. I shall use the presentation of the KP hierarchy due to Gelfand and Dicke. See for
instance Segal & Wilson in the proceedings of the I.LH.E.S for a description of these ideas. The
equations of the KP hierarchy are the consistency conditions for the existence of a solution ¢ to the

following system of linear partial differential equations

(8¢2"(Q2)+)¢’=0» (8:3“(03)1-)1/’:0’ Tt (8cr—(Qr)+)¢=0; :

where (Q"), is an r*® order O.D.E. in the z variable, Q. =(0) +ru(@,) " +---+w, and
u(z,ty,t;,++) is the subject of the KP hierarchy equation and w, is some function which will be
determined in terms of u by the equations. The notation is intended to indicate that the ordinary
differential operators (Q") , are the differential operator part of the pseudo-differential operator Q
raised to the r*® power where Q=0,+u(8,)" '+ (lower order) and where (3.) "} is a formal
pseudo-differential operator defined by the relation (8, YU =£(0,) + }: ( a.) f(8 ) Ik

The basic KP equation is the equation on u(z,t;,1;) that follows ftom the consistency conditions
for (0‘2 - (Qg)+ ¥ =0 and (8‘3— Q% +)¥ =0 alone. The evolution in the higher time variables are
symmetries of the basic equations (and each other). If one imposes invariance in the n** time variable
t, then the reduced system is referred to as the nt generalized KdV hierarchy (n =2 gives the
standard KdV hierarchy and n = 3 the Boussinesq).

The basic idea is that the operators (Q"), can be thought of as infinite dimensional matrices
acting on LQ(R) where z is a coordinate on R. One can approximate this by nxn matrices by
imposing a symmetry in the n** time variable since then (Fourier transforming v in the ¢, variable) we
have (Q")+¢ = Ay aud we consider only ¢ lying in the n-dimensional solution space of this equation,

represented, say, by v and its first (n — 1)-derivatives with respect to z. With this reduction we have:

Zu 0 1 0n_3 0 0 0 0
C 2w e . 0 0
(3,2“(Q2)+)¢= 0 reduces to 8‘2—- ' 1 +A . b=
. . . 0 1 0 0
(2—n) ] 1 0
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u: u 0 l 0n—4 0 0 0 0
, oo , R | i 0 0
—_ = t - =
(B, = (@) 4 )¥=0reducesto 9, — = . EN o |[*7°
0 0 1 0

where 0 is the r xr zero matrix. This matrix linear system is linear in the spectral parameter A and
can be seen to be the linear system of a reduction of SDYM with 2 null orthogonal traunslation

symmetries.[]

Note: A large gap in the above discussion is that the linear system is shown to be contained within the
SDYM linear systems, but I have not characterised those SDYM solutions with the 2 orthogonal null

symmetries that give rise to the nth KdV system.

Proof of Lemma 2. These ideas are standard. dne presents the Lie algebra of the area preserving
diffeomorphisms of a torus by using the area form as a symplectic form and representing vector fields
corresponding to elements of LieSDif f(E?) by thelr Hamiltonians. Let 8, and 0, be ‘angular
coordinates on the torus such that the area form is d, , df,, then a basis for the Hamiltonians is

H 4 = exp{27i(A;8, + Ay0,)} where 4 = (A;,A;) € ZxZ. The Lie bracket is the Poisson bracket:
{HyHg)=(AAB)H,, g where (4,B)=A,B;-A;B,.

For SL(N) we use a basis for the Lie algebra constructed using a pair of mattices U, V satisfying the

quantum plane relations: UV = (VU where ¢(¥=1. An explicit representation has U diagonal with

powers of {( down the diagonal U,'J- = Ci6'-j and V a shift matrix V;; = 6‘“ +1 mod NY:
A basis for the Lie algebra of SL(N) is then furnished by ’

Ardy A A
T,=N¢ 2 Ulvie,

The commutators are then given by:

A, B

[T4Tpl=Neoin—gr—=T4, p 2 (AAB)Ty4p
N—oo

which gives the same commutation relations as above for HA in the limit as N—o0.0

Proof of lemma 3. This is, to a certain extent, a corollorary of the results in Mason & Newman (1989).
In that paper it was shown that if you take the algebraic relations obtained by imposing four
translational symmetries on the sell-dual Yang-Mills equations and take the gauge group to be the

group of volume preserving diffeomorphisms of some 4-manifold then, roughly speaking, one obtains
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the self-dual vacuum equations. Lemma 3 can be reformulated so as to be a special case of this.
The self-dual Yang-Mills equations on R* with metric ds? = dudy + dvdz (signature 2,2) are the
integrability conditions on connection components (4,,4,,4,, Av) in the Lie algebra of the gauge

group for the the linear system
(B, +A,+A0,+A))v=0 {8,+A,+ A0, + A4}y =0.

When G is SDif f(£?) the connection components are all vector fields on E? (depending also on the
coordinates on R‘). Impose two translational symmetries on the R* so that the connection components
depend only on the quotient variables on R?. The linear system then reduces to the system
(V o+ AW, ¢ =0={V,+ AV }¥ where the V’s are vector fields on R*xT% These vector fields
preserve the natural volume form on R?xIL? and so determine elements of the Lie algebra of the
volume preserving diffeomorphism group. The linear system is precisely that for the self-dual Yang-
Mills equations with 4 translational symmetries and gauge group the volume preserving
diffeomorphisms of R? x £2.

Concretely introduce coordinates (p,q) on £? so that the area form is the symplectic form dp , dq,
and suppoee the symmetries to be in the z and y directions so that the variables depend only on the
coordinates (u,v) on R?. Represent the vector fields A_on £2? by their Hamiltonians denoted h_ etc..
The field equations are

(O +A+AA, B, +4,+ A4 =0

The first implication of this is that A2[A:,Au] =0 so that we can choose coordinates on L2 so that

A,=aq and Auzap. The term proportional to A implies thuzaphu,

h,= aqg for some g = g(u,v,q,p). The final equation yields in terms of g

so that h, = ('3pg and

2 2 y
which is Plebanski’s second heavenly equation.O]
Thanks to George Sparling for discussions.

Mason, L.J. and Newman, E.T. (1989) A connection between the Einstein and Yang-Mills equations,
Comm. Math. Phys.

Mason, L.J. & Sparling, G.A.J. (1989) Non-linear Schrodinger and KdV ate reductions of the sel{-dual
Yang-Mills equations, Phys. Lett. B.

Ward, R.S. (1985) Phil. Trans. R. Soc. A 315, p.451 »

Woodhouse, N.M.J. & Mason, L.J. (1988) The Geroch group and non-Hausdor{l Riemaun surfaces,

Nounlinearity 1.



Some Quaternionically Equivalent

Einstein Metrics

A(U\J"'W Swév«

If M is a 4-manifold, not necessarily compact, admitting two Einstein metrics g, g2
in the same conformal class such that the scalar curvature x; of g; is non-zero while
ks = 0, then Brinkman [1] showed that M is conformally flat. This result may be
restated quaternionically. By a quaternionic structure on a 4n-manifold we mean
a reduction of the structure group to GL(n,H) xz,2 GL(1,H). This is equivalent
to requiring that M has a rank three subbundle § C End TM which locally has a
basis I, J, K satisfying

IZ,:J2=_1 and IJ=K=-JI. (*)

Now GL(1,H) is isomorphic to SU(2) x R5g, 80 when n = 1 we obtain the confor-
mal group CO(4) = GL(1,H) xz/, GL(1,H) and Brinkman’s result tells us about
Einstein metrics with the same quaternionic structure.

If M**, n > 2, has a quaternionic structure and a compatible metric g, we
may embed G in A2T*M by I — wy, where wi(X,Y) = ¢g(X,IY), and define a
global 4-form () via the local formula @ = wi Awr+wjAwy+wrg Awg. I Qs
parallel with respect to the Levi-Civita connection, M is said to be quaternionic
Kahler. The fundamental example of such a manifold is quaternionic projeciive
space HP(n) with its usual symmetric metric. Alekseevskii 2] showed that quater-
nionic Kahler metrics are automatically Einstein and that the curvature tensor may
be decomposed as

R = )\Rﬂp(n) + Ro,

where X is a constant positive multiple of the scalar curvature and Ryp(,) and Rqg
have the symmetries of the curvature tensors of HP(n) and a hyperKahler metric,
respectively. (For a hyperKahler manifold, G is trivialized by parallel complex struc-
tures satisfying (x).) If E and H are bundles associated to the basic representations
of Sp(n) and Sp(1) = SU(2) on C?" and C?, respectively, then TcM = E ®c H,
G is the second symmetric power S°H and R, € S*E.

18
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Now suppose M*" admits two metrics g*, g9 with the same quaternionic struc-
ture such that g* is hyperKihler (and hence scalar flat) and ¢9 is quaternionic
Kihler with non-zero scalar curvature. Let V* and V9 be the Levi-Civita connec-
tions of these metrics. The hyperKahler structure trivialises H and we obtain a
section h € ['(H) with V*h = 0. Since the twistor operator D: H T HQT =
E®(E®S*H) - E® S*H is qua.tcrnioni;:ally invariant (3], VIh = e is a sec-
tion of E. Let h = jh, é = je and consider the vector field X = eh — éh. Now
T @ T* decomposes as

SH + S?’E + R+ AZE + S*HALE + S’HS’E

and vector fields whose covariant derivatives lie in the first two terms are Killing,
whilst those with derivatives in the first four summands give rise to quater-
nionic transformations. A simple calculation shows that X is quaternionic, while
i(eh + h), eh + éh and i(eh — éR) are Killing vectors. In the hyperKahler structure
these are just JX, JX and KX and together with X they define a local action of
the group H* in which the compact subgroup Sp(1) = SU(2) acts isometrically, but
permutes I, J and K. A Weitzenbock argument now shows that Ry lies in S*E-,
where E+ is the orthogonal complement in E to the span of € and ¢; so the orbits
of the H*-action are flat in the hyperKahler structure. Since the vector fields span
a quaternionic subspace, an argument of Gray [4] also shows that the 4-dimensional
orbits are totally geodesic (with respect to either metric).

Given a hyperKahler (4n + 4)-manifold N admitting such an H*-action which
is free, we can construct a quaternionic Kahler manifold M*" as follows. Fix a
complex structure I and let U(1) be the subgroup of Sp(1) preserving I (and hence
permuting J and K). Let u: N — u(1)* = R be a Kéhler moment map for this
action. The level sets of u are actually Sp(1)-invariant and M = p7}(z)/ Sp(1)
is & quaternionic Kahler manifold {5]. Letting H* act diagonally on N x H gives
a quaternionic Kahler metric on N in the same quaternionic class as the original
hyperKahler metric. One may construct examples of such manifolds N as bundles
over quaternionic Kahler manifolds, obtaining explicit formulae for both metrics.
These constructions generalise the fibration H™t! \ {0} — HP(n). In this flat

case the quaternionic Kéhler metric obtained on the total space is induced by the



inclusion H**! «— HP(n +1).

Kronheimer [6] shows that every adjoint orbit of nilpotent elements in a com-
plex semi-simple Lie algebra g€ has a hyperKiahler metric. One may check that
this structure admits an H*-action of the type described above. If g is simple, the
smallest orbit fibres over a compact homogeneous quaternionic Kahler manifold and
the classification in [2) shows that all such quaternionic Kahler metrics arise this
way. When g = su(3), the quaternionic Kahler manifold 18 CP(2) and locally one
has a non-flat hyperKéhler structure on the negative spin bundle (away from the
zero section).

The moment map u is actually a hyperKahler potential, that is u is simultane-
ously a Kahler potential for each of the complex structures on N. A hyperKahler
manifold N admits such a function if and only if it admits an H*-action of the
type described above. Also, u is a hyperKahler potential for N if and only if the

hyperKahler metric is given by
Vig =gk,

Further details will appear elsewhere.

Acknowledgements. [ would particularly like to thank Simon Salamon for conveying to me
ideas of C.R. LeBrun and Y.S. Poon that are implicit in this pote.
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A Non-Hausdorff Mini-twistor Space

This note is about another example of a non-Hausdorff complex manifold
arising naturally in twistor theory. A mini-twistor space X is the 4-real-
dimensional space of directed geodesics of a 3-real-dimensional Weyl space
K, which becomes a 2-complex-dimensional manifold if the Weyl space
satisfies the Einstein-Weyl condition. Since it is defined as a space of
geodesics, and geodesics can wind around in funny ways, a mini-twistor
space is always liable to be non-Hausdorff. I will describe an example of a
particularly simple Einstein-Weyl space where the mini-twistor space can be
seen to be non-Hausdorff in a fairly tame way.

Recall first that a Weyl space N is a manifold with a symmetric
connection D and a conformal metric [gl which 18 preserved by D. Given a
choice gew Of representative metric, the compatibility between conformal
metric and conection means that we can define D in terms of the metric
connection and a I-form wgq. Under change-of-choice of representative metric
we have v

J ™ 2* Jew o P> B+ 2V, loaﬂ (1)

so that we can think of a Weyl space as the pair (g.e,©,) subject to (1).
(For more details see e.g. {H],(JT1,(PT] ).

The connection D has a Riemann tensor and & Ricci tensor, but the
Ricci tensor is not necessarily symmetric. The Einstein-Weyl condition on H
is that the gsymmetrised Ricci tensor be proportional to the (conformal)
metric. This can be written out as an equation on the Ricci tensor of the
representative metric and the 1-form o,. In 3 dimensions the equation is

R - LV uy, -l iUl Nqa. , some N. @)

This equation is, from its definition, conformally invariant and can
be regarded as a conformally-invariant generalisation of the Einstein
equations. Note that spaces conformal to Einstein spaces satisfy (2) since
we can use (1) to eliminate «,. These examples can be recognised by the
fact that ¢ is exact.

The example I want to consider comes about by conformally rescaling
and making identifications on flat space. Take the metric and I-form as

9= drt 4 r2(d0" +3it0A) w0

and conformally rescale with Q = exp(-x), defining x = log r :
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q= d%* + 48w siB A W= -adXo g,

Now impose a periodicity in x to obtain an Einstein-Weyl structure on S'xS®
(this example 1s given in [PT]; part of the interest of it is that this
manifold has no Einstein metric). The periodicity in )y corraesponds to
identifying the radial coordinate r with Ar for some M with O<A(lL.

As I said at the beginning, the space of directed geodesics of a 3-
dimensional Einstein-Weyl space K 18 a 2-dimensional complex manifold X,
the mini-twistor space of R. For flat space, the mini-twistor space 18 the
space of directed lines in R® which can be thought of as pairs of 3-
dimensional real vaectors (a,b) whaere a is unit and b is orthogonal to a.
Equivalently, this is TPi, the tangent bundle of the complex projective
line. For the example to be considered here we shall need to modify this a
little.

A geodesic in the S'xS2 Einstein-Weyl structure is as shown below:

[\naaaem\ geodesic

I3

=1 .
L \.‘.\,;Jf;.\:3 suo\es:c

It {s basically a straight-line which, when it hits the outer sphere at r=1i
is brought back to the inner sphere at r=\ making the same angle with the
radius vector. This means that in the future, the geodesic tends to a
limiting one which is radially outwards and closed, while in the past it
tends to a limiting one which is radially inwards and closed. In
particular, this means that there are 'shadows' in the space: given a point
p, points on the diameter through p but on the other side cannot be reached
by geodesics through p (I am gratetul to Paul Gauduchon for the suggestion
that there might be shadows in this exemple). We shall return to these
shadows below.
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To construct the mini-twistor space X, consider first the closed
radial geodesics. These correspond to the zero-section of TP1l, ie to lines
in R® defined by pairs of tha form (a,0), but there are 2 closed radial
gaodasics for each radial geodesic in flat-space so we need to double the
zero-saction. Next the non-radial geodesics: think of a line in flat-space
as a pair (a,b) then the process of bringing this back from the outer
sphere to the inner sphere in the figure above corresponds to leaving a
alone but rescaling b, b 4+ Ab , with A as before.

This is then the mini-twistor space: delete the zero-section from
TP1; identify b with Ab in the fibres; then put two copies of the zero-
saection back. It is non-Hausdorff at the radial geodesics ie at the
doubled-up zero-section, since any geodesic which i3 'near to' a radially
ingoing one is alsc 'near to’' the continuation of it to the other side as a
radially outgoing one.

A point p in the Einstein-Weyl space is represented by a holomorphic
curve (a 'twistor line') in the mini-twistor space. The specification of
this twistor line includes, at some stage, a choice of which of a pair of
doubled-up points to take. Then any twistor line through the other of the
relevant pair of doubled-up points in the mini-twistor space will
correspond to a point of the Einstein-Weyl space in the ‘'shadow’ of p.

A more complicated example of a non-Hausdorff mini-twistor space
should be provided by the 'Barger sphere' Einstein-Weyl space, (JT],[HT].
This corresponds to a left-invariant metric on the 3-sphere. There is a
special set of gaodesics like the radial ones in the example above with the
proparty that any other geodesic tends to one of them in the future and
another in the past. The mini-twistor space seems to be a sort of deformed
quadric with non-Hausdorff-ness aslong two generators of the same family.
Henrik Pedersen and I have a description of it as a 'weighted projective
spaca' but it is a 1little obscure.

(Like my other TN article, the work for this was done during a most
pleasant visit to Henrik Pedersen in Odense, and I gratefully acknowledge
hospitality receivaed.)
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More on harmonic morphisms

I wish to correct two errors in my last Twistor Newsletter article, to
make some observations which might make that article clearer, and to
describe what I think is a new way of looking at the Kerr theorem
appropriate to Riemannian twistor theory (though in this last connection
see Hughston and Mason CQG b5 (1988) 275).

The two errors are as follows: firstly, the generator of the
congruaence should have baen

L= 1-0F > + ot@ D - 1@ b ()
t+ad bz Ltad dx ltad Oy

(this expression had some bars missing before)
and secondly a(x,y,2z) is actually given implicitly by

f(x(1-a?) + 1y(1+ax®) - 2az,a) = 0 (2)

(this expression had gsome signs muddled before).

In the interest of clarity, I should slso have added that:

- 1f a = ut+iv then
V3y = 93y = 0 = VueVv ; |Vui{2 = |[Vy|z

ie the complex function aix,y,z) obtasined from (2) defines the
harmonic morphism,

- afx,y,z) 1s constant along L as given by (1),
- for a given constant value of a, the real and imaginary parts of (2

each define a plane and L is then tangent to the line of
intersection of the two planes.

There is an 'elementary' interpretation of (2) as tollows: a line in
R? is given by an equation of the form
r~a = b I
where a is a unit vector and b is orthogonal to a.

Parametrise the unit vectors with the complex number «a according to (1),
then (3) can be written

x(1-a®) + iy(1+a®) -2az = @ 4)

where B parametrises the Argand plane orthogonal to a. Now (2) 1s
equivalent to teking B to be an arbitrary holomorphic function of o ie the
'intercept' is an arbitrary holomorphic function of the ‘direction', both
understood as complex variables. When this function is linear, the



congruence is a 3-dimensional picture of the Kerr congruence and is
sketched in Baird and Wood Math.Ann. 280 (1988) 579-603

'Harmonic morphisms' 1s also the answer to the question ‘what do you
get from the Kerr theorem in Riemannian twistor theory (when there are no
shear-free geodesic congruences)?' To see this, take a homogeneous
holomorphic twistor function F(Z*) and intersect the zero-set of F with a
line in twistor space which 1is 'real' in the sense appropriate to
Riemannian twistor theory. This gives

F(a+bl{,-b+al,1,0) = 0 (5)

writing (1,{) for the n-spinor (rather than (1,o) which I used at the
beginning). Here a and b are complex coordinates on R* and the metric is

ds? = dad&® + dbdb (6).

Solving (5) gives a function {(a,b,&,b) with

L+ cg& = 0; ¥ - g = 0 n
o8 - S db >a

from which it follows that { has vanishing Laplacian and null gradient in
the metric (6):

DR 4+ DB = 0; DLOL + DG =0 (8)
dads dbdb badE  dobdb

If we think of { as the stereographic coordinate on the sphere, then
(8) is easily seen to be the conditions for (5) to define a harmonic
morphism from R4 to S§*. However, (7) {s stronger in that it implies that,
as well as defining a harmonic morphism, { is constant on flat 2-planes.
Note that if { satisfies (8) then so does any holomorphic function of {. In
this sense, { defines a family of holomorphically-related harmonic
morphisms constant on flat 2-planes, ona of which satisfies (7).

For the converse suppose that n satisfies (8) and is constant on flat
2-planes. Define { by
on + CQ% =0 80 that also 2dn - {dn =0
o8& o bb da

then 1t follows from the conditions on n that { is a holomorphic function
of n and so in turn satisfies (7) and (8).

To summarise, a family of holomorphically-related harmonic morphisms
from R4 to S2 which are constant on 2-planes defines and is defined by &
holomorphic function in twistor space. This can be called ‘'the Riemannian
Kerr theorem’'.

(This view of the Kerr theorem arose in discussions with Henrik
Pedersen.) :

KPT
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The Penrose Transform without spectral sequences.

On twistor space there are three short exact sequences connecting local
twistor bundles and the differential forms. Thus

0 W —=T2(=3) > >0
00— Q= TEA(2) 5 Q' -0 (1)
0 Q' =T (-1)— 0 —0.

The maps are inherited from the Koszul compler for twistor space:
0= T =T 5T, - C -0,

and are given by w — Z%, P* — PleZAl Qe ¢ 4 Q7778 and R, —
R, Z°. Similar sequences are available on any homogeneous space, where an
analogue of a local twistor bundle is an extension of two )rredumble bundles
in a BGG resolution [1] linked by a simple reflection.

The easiest Penrose transform on any complex homogeneous space is al-
ways that of the highest forms—the result is non zero in highest possible
degree only, always the kernel of an invariant differential operator, resolved
by further invariant operators and irreducible (over sl(4, C) in the standard
twistor case). Here of course we get self-dual Maxwell fields:

v3, AA'
0 — HY(Q®) = Oup|—1] ¥ Oan]-3] "= O[-1] — 0.

The naive idea is to start from this and use the long exact sequences on
cohomology coming from (1) to compute the cohomology of the rest. The
first step is to compute the cohomology of the local twistor bundles and the
second to use this in the long exact sequences.

Take the case of T*[—3]. This is obtained by coupling the result for O3]
to local twistor transport on Minkowski space, whilst the result for O[-3] is
in turn obtained from H*{Q%) by helicity lowering. Thus H(7“[-3]) consists
of solutions of the local twistor equation

0 = v4 Wi = Viwi ~ o4
A Tap + %CAIB,¢ VA Tap + QVAB'¢ .

Here, wqqr € Q44 is a one form, ¢ € O[-—Q] and w4 g € O(AIBI { l] is a self
dual two-form. The first of these equations simply fixes ¢ = VA w4 and one
is left with

VC;WB)A‘ = d+w =0 V:ln‘A:B: e %VAB:V“% = 0.

Since d : Q% — Q% is onto kerd : 1® — Q) we can regard this last equation

as fixing m4p (up to a self dual Maxwell field) and requiring OV w, = 0.
Thus

1M(T*(-3)) = s.d. Maxwell + {w,|d*w =0 = DV w,}.



H'(92?) is then just the second term. This is a non trivial extension of two
irreducibles, namely the anti-self-dual Maxwell fields (obtained via potentials
mod gauge) and

{feo|nlf=0)C

(obtained by letting w, = V_f). Of course, this calculation checks with more
standard methods, The cohomology of !, O are equally easy to compute
this way.

To carry this out for general complex homogeneous spaces we have to
overcome two difficulties. The first is to obtain the cohomology of local twistor
bundles. This is done by observing that helicity raising and lowering (or the
translation principle) commutes with taking cohomology and that the result
splits into a direct sum of (x-primary) parts under the action of the center of
U(g)—i.e. under Casimir operators. One has to perform two translations, by a
finite dimensional representation and its dual. The first translates to singular
character and the second out again to regular character. Fach time, we also

project out only one of the x-primary parts. Let’s label these two operations
Yar po—a is a simple root for g and the finite dimensional module is just F'(A)

where X is the fundamental weight dual to a. Vogan has an algorithm for
calculating the ¢, on irreducibles, which succeeds by the Kazhdan-Lusztig
conjectures. This reduces the problem to (not too difficult) combinatorics.
The second difficulty is to understand the maps in the long sequence. Here,
translation again comes to the rescue. It turns out that we can often pick «
so that for a given homogeneous bundle F, Yo, F = 0. Then ¢, H*(F) =0
too. So any irreducible not annihilated by ¢, can’t occur £*(F)! This data
is easy to deduce from Hasse diagrams (see my other article in this TN).

Conjecture: This is enough (with Schur’s lema) to calculate the maps in
the long exact sequence (and so to compute the Penrose transform of any
homogeneous bundle).

I’ve checked this to be true in many cases, one involving so(12)!

A slightly stronger conjecture is that if an irreducible occurs in H* and
$atha H' then it is mapped non trivially from one to the other. This is true
in all the examples I know. If it is true in general it should follow that
the Penrose transform will detect all non-trivial homomorphisms of Verma
modules.

[1] Baston/Eastwood: The Penrose transform—its interaction with represen-

tation theory. O.U.P. (1989).
1S anton
(ilk

28



29

Cohomological contours and cobord maps

Introduction

In (2], we asked how to tell whether a given contour « is cohomological, that
is, whether x treats the twistor functions on the ‘outside’ part of the diagram
properly as cohomology classes. If A and B are a pair of ears in a twistor
diagram (i.e. a pair of planes on which a twistor function blows up) then by
duality, x is cohomological with respect to (A, B) iff K = 8.A where 0, 1s the
Mayer-Vietoris connecting homomorphism from the complement of AU B to
the complement of AN B. By the main Lemma of (2] (reproduced as Lemma
1 below), this somewhat impractical criterion is equivalent to the following

CRITERION: & is cohomological if either there is a A with
8a(A) =n and §(A) =0

or there i3 a u satisfying these conditions with ¢ and b inter-
changed.

Here é,; are the cobord maps corresponding to A, B. The reason this is
useful is that the cobord maps are dual to the external S! integrals which
are used all the time in twistor diagram theory.

APH has suggested that for any twistor diagram whose evaluation does
not require the use of a contour with boundary, one has the much stronger
K = 8,6,(something). Moreover, he has an example of a cohomological con-
tour (for the scalar product diagram for spin 1) whose evaluation requires
the use of a boundary contour (or some other such device) for which the
relative version of the above criterion holds, but for which the condition of
this paragraph fals.

In this article we show that the criterion of (2| does indeed carry over
to the relative situation and we also prove APH’s conjecture about contours
without boundary by relating it to the main result of [1]. We make significant

use of the lemma mentioned above, which we restate here in a generalized
form:

Lemma 1 Let X be a complez manifold and let Sy, S; be compler submani-
folds of (complez) codimensions py, pa, in general position so that S = 5;N S,
is a complex submanifold of complexr codimension p = p, + p;.
Consider the two Leray sequences
- Hiu(X - 5) L i-2p+1(S1 — S2) RN H(X - S)) -
l | l
= Hi(X =8) ™ Higpua(Si—S2) =5 H(X-5-5) —



Then the composite 8,Ng 13 equal to the Mayer-Vietoris connecting homo-
morphism

8. : HH—I(X — S) i H,(X - Sl - Sg)

Proof. This is exactly as in [2]: the essential point is that even though we
have allowed the codimensions to exceed 1, the formula for the cobord map
in terms of compactly supported differential forms is unchanged. O

Residues, cobord maps and the ‘general procedure’

In (1] it was shown that if x is a cohomological contour without boundary
which evaluates a projective twistor diagram then x is necessarily in the
image of the cobord map

A: Hy(A~E) — Hyy (T - A - T) (1)

where v is the number of fields, [T is the product of v (projective) twistor/dual
twistor spaces, A is the product of lines on which the fields are based and &
is the singularity set of the kernel (interior) of the diagram. An element &
in the RHS is used to evaluate the diagram by dotting all the external fields
together, multiplying by the kernel of the diagram and integrating over .

On the other hand, those who evaluate diagrams on a professional basis
are accustomed to the use of a large number of ‘small’ (i.e. lower codimen-
sional) cobord maps. We remarked in [1] that the methods had to be es-
sentially equivalent and dual to the relationship between cupped and dotted
forms. Using Lemma 1, we can now make this precise.

Proposition 1 Let X,5,,5; etc. be as in Lemma 1. Then the following
diagram 1s commutative:

HAS) % Huizgya(Si—S2) 5 Hupgpoa(X — 81— S3)
[ I

2]

H(S) %  HJ(X-95) 5 Hopp2(X =5, — )

Here A, 8,,8, are the obvious cobord maps and 0, is the Mayer-Vietoris
connecting homomorphism.

Proof. By Lemma 1, 8, can be replaced by the composite

Ng 6&

Hoppoi(X = 5) =5 Hopopoya2p(S1 = 52) = Hopgpoa(X = 50 = 52).

Since 8 = b, (and p — py = p2) it is enough to show that the following
diagram 1s commutative:

H.(S) B Hoyapy (51— Sa)
LA i 1|
U~+2P—1(X_S) = H~+2pz—l(51 - 52)

30
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But that i1s obvious. O

Theorem 1 Suppose that the above twistor diagram with v (external) ver-
lices has an evaluation by means of a contour without boundary. Then any
evaluation coming from the ‘general procedure’ (1) can be implemented by
integration over 2v circles (one for each ear) followed by integration over a
contour in A — L. '

Proof. (i) By applying the Proposition to the case X = CP?, each S;
equal to a plane, we conclude that the cobord associated to a line in CP3
is the same as the composition of two cobords, one for each plane, and a
Mayer-Vietoris map.

(11) Similarly, by applying the Proposition with X equal to the product
of v twistor spaces and each S; equal to the product of v — 1 twistor spaces
and one projective line, we see that the ‘fat’ cobord map A of (1) coincides
with a cobord for each line and v — 1 Mayer-Vietoris maps.

Combining (1) and (ii), we complete the proof.0

This theorem brutally exhibits the strengths and weaknesses of the ‘gen-
eral procedure’. It shows that any cohomological evaluation by integration
over a closed contour factors through taking residues at the external lines.
That is the strength of the procedure: its weakness is that this residue is
very often zero for interesting twistor diagrams; for such diagrams, boundary
contours or some non-trivial extension of the class of functionals considered
in [1] are plainly needed.

A criterion for cohomological boundary contours

When is a boundary contour cohomological? As in the non-boundary case,
a contour i1s cohomological if it lies in the image of a certain Mayer-Vietoris
map. As we remarked above, this is not much use. However, with the aid
of the following relative version of our basic lemma, we can get a practical
criterion for a boundary contour to be cohomological.

Lemma 2 Let X, Sy, Syelc. be as in Lemma 1. [n addition, let F be a closed

submantifold in general pesition. Consider the two Leray sequences

- Hy (X =S, F) % Hiyp1(S1 =5, F) 2 H(X -8, F)
l | !

= Hi(X = 53, F) 2% Higp (S = S, F) 25 H(X =5, 5, F) —

Then the composite 8N, is equal to the Mayer-Vietoris connecting homo-
morphism

8, : Hipy(X ~ S, F) —s Hi(X = 5, ~ S,, F). (2)
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Proof. Recall that an element of H;(X, F') is represented by a pair of
compactly supported forms (a, a') such that

a € AS™X-i( X)) o € AS™X-Y(F) da =0, afF = da'. (3)

(Here and throughout, ‘|F’ means ‘pull-back to F".)

Let D be a tubular neighbourhood of §, — 53, relatively compact in X —Sj;
let j be the inclusion of §; — S in X — §; let x : D — 5, be the projection
which we may suppose carries points of F N D to points of F N (S, — 52).
Then there exists a homotopy operator H such that

'y —u = (dH + Hd)u and (Hu)|F = H(u|F) (4)

for all forms u on D.
Let 3 be a positive smooth bump function on X' — 5, equal to U near
S1 — S and equal to 1 in a neighbourhood of X — D. Then we have the

following formulae:

O0a,a') = (aAdB,a A(dB|F));

Na(a, &) = (§*(a),5"(a));

6(1,7) = (=*(y) A dB,x*(y') A (dB|F)).
So

6N (ay0’) = (x°5°(a) AdB, w"j*(a") A (dBIF)
(aAdB+dHa AdB, o' A (dB|F) + Hda' A (dB|F) + dHa' A (dB|F))

Oua,a') + (dHa,(Ha|F) + dHa') A df

1

il

i

using both parts of (4) and (3). To complete the proof, it suffices to note that
the ‘error term’ in the equation above represents zero in relative homology
by definition. O

Thus the criterion of TN28, restated in the Introduction, holds also for
boundary contours: thus some of APH’s standard procedures (reduction to
C P? integrals) are justified.

What is still missing is a relative version of the ‘general procedure’ of [1].

Any offers, anyone?

References

[1] Huggett & Singer, Projective twistor diagrams and relative cohomology,
Trans. A.M.S. (to appear, at last, in November 1990).

[2] Huggett & Singer, Cohomological residues, TN28.
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Some new boundary-contour integrals

These notes fill in some gaps in the theory of contours for twistor diagrams.
First, there's a spinor integral with two boundaries which doesn't seem to
have been studied before, namely:

A DIAaDn ( \)
e J (3.9)(1. X)) |
fp=0 1 §=0

To construct a contour, first take the special case °<>b’ and coordinates

§A>xo(. +F, ’[A’}j-(g-*ﬁa

so the integral becomes ‘
ot 8)" F A dy Le—y)
. 2"" F e, 30‘,8+F.8’°

In this form it's immediate that there is a contour with the topology of an
annulus yielding p .S

oL.f8 ot . §

By a power series expansion, or otherwise, the general case can be
evaluated as

u-a)"(»g(“—ﬁ—f‘ ¥:5 Y - 5: fe o

RS A
2.8y f “‘XPS““*SF'X

The contour can be thought of as & sphere with two holes in it. One hole has
boundary on . =0, and allows the singularity in q-¥ to poke through it;
similarly for the other. If one of these singularities is absent, the
corresponding hole can be filled in with a ‘cap’ (which makes no difference
to the answer.) Thus neither pole is essential to the contour. This can be
seen explicitly by evaluating a different form over the same contour, viz.

> m—“—ﬁ(“’ 5“)=tf§ﬁ+°‘-kr-zr<ps Ll >>

2n. (s
f.p=0 U

L) ogpas ky \bepe A

(18 =0

Then in the cases where Iz ¥ or K=ol we can ‘cap’ one hole and recover
spinor integrals already well-known*

§Df\°f| —&’Lfmwzﬂ
Q_‘At

(X STL S oL 2% (Y.4) 1. Y.
e 9} Tpeo ) My &
Ifboth N= Y ach K=ol | pinda _

then both caps can be put on and we recover ;- (v.a)
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There is also an analogous contour for

DI a P9 (2)
j‘P:O"l‘S:O (']‘28)1(3.‘1)
‘S.{\; (o)

To see this, use the same special case and the same coordinates, then the
contour is readily specified as the interior of a triangle bounded by the
three given surfaces. The result in the general case is

)’ (pg)wo\w
(e yfd w — 4. SP‘()

These contours for spinor integrals imply (via cobordism) contours for
certain twistor integrals. [n particular, (2) induces a contour for:

¢ O

—\ F

with the property that (AB), (CD) are treated cohomologically, whilst the X

and Y poles are nol essential.

Because these poles can be filled in', we can operate with (X . DD) (7.7 )
and still have a non-zero integral: in fact explicit calculation yields

-t - #< B
KT o
ISR § L

But the RHS is just the inner product for the two spin-| elementary states.
This means that the spin-1 inner product cazbe represented as a twistor
integral which reduces Lo a spinor integral, i.e. with a contour that fibres as

@')“ %

but 1o do this we have to introduce these extra boundaries.
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Since the position of the boundaries makes no difference to the answer, it
looks as though they can be removed by adding some ‘caps’; and indeed
they can within the eatire twistor integral, but at the cost of abandoning
the fibration which reduces it to a spinor integral. In fact the contour
(without any extra boundaries) can be specified as (solid ball in R x (S!)2).
This integral is of course the simplest example of a cohomological contour
which cannot be realised as (a spinor integral x (S')4) (see the article by
SAH and MAS in this TN).

These new spinor integrals are also useful by guiding the analogous
construction in CP2 . That is, we study

Dlu A Dz\j . § Dtx A DI:’
¢ m(a.x)t ’ le.y) (a.x)

W =0
w0
‘:)3 O

a9 ‘\

r .2t
A9

X »S

where % Ya. are elements of CcP? Cp2:

The construction of contours is not quite as immediate as in the spinor case
but can be done. We can then use them to induce contours for the twistor

diagrams
¢ D
° P
) -(
Q
o/ \&
/< B P B

which are nor cohomological in (AB), (CD). The first of these contours was
shown to exist by SAH (D. Phil. thesis, 1980) but until now we haven't had
a direct construction for it. The second is closely related. Explicit evaluation
of the integrals shows agreement with the results previously derived by
limiting techniques®). These contours are important in the theory of
inhomogeneous diagrams®. There are further generalisations and
deductions from these new constructions which, put together with SAH and
MAS's recent work, should cap most of the holes in the theory of

elementary twistor diagrams.
A n dr-tw

ho dges

*APH, Proc. R. Soc. Lond. A 397, 341-374 (1985)
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