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Mass Positivity from Focussing and the Structure of :°

Recently, one of us (RP in TN 30, [1]) outlined an argument to show that in asymp-
totically simple space-times,satisfying a certain assumption, the mass is non-negative. The
assumption —the null conjugate point condition— requires that every endless null geodesic
contain a pair of conjugate points. This condition is physically reasonable. It is implied
by completeness of null geodesics, a weak energy condition (T,31%1° > 0 if {,1° = 0) and
genericity. The purpose of this contribution is to examine more closely what it is about
the structure of spatial infinity, :° , that the argument establishes. In particular, we will
be able to establish that the mass in question is indeed the ADM mass at ° . More
precisely, our main result is that the ADM 4-momentum P, of an asymptotically simple
space-time satisfying the null conjugate point condition is necessarily a future-causal (or
zero) 4-vector at :° . (In this article, the assumption of asymptotic simplicity will include,
in addition to asymptotic flatness at null infinity, that at spatial infinity. Thus, we assume
that the space-time is AEFANSI in the sense of [2] and that the parity condition of {3] is
satisfied at 1° .) '

Let us begin by reviewing the result presented in [1]. Let M be an asymptotically
simple space-time. Fix a point @™ on the future null infinity §* of M. Let it Lie on the
generator & of §. The past-directed light rays from o will be said to focus negatively if
they meet §~ in a family of points which recede indefinitely into the past (i.e., towards
i7) as these rays approach a. Let us suppose that this occurs. Then, if we examine the
light rays neighbouring a given ray A through a™, as X approaches «, the total shear of
these rays along A has the form of a convergence in the radial direction and a divergence
in the transverse direction.
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(See fig 1.6). This is the behavior encountered in the negative mass Schwarzschild solution.
In the positive mass Schwarzschild space-time, the situation is Just the opposite. Now, we
encounter positive focussing. In this case, light rays from ot meet ¥~ in a family of
points that approaches i® as the rays approach a, there is a divergence of rays in the radia
direction and convergence in the transverse direction. Thus, if we move in radially, the ray
spray away from each other as i° is approached, whereas transversally they pinch toward
one another. (See fig 1.8.) Now, as the null geodesic ) gets closer to a, various non-linea
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terms die off and the shear is given by the integral, f/\ ds Copeal®ln®n?, evaluated along A,
where [ is a parallelly propagated tangent to A, s the corresponding affine parameter, and
where 1® is the radial connecting vector. Thus, if negative focussing occurs, the integral
would be positive and if positive focussing occurs, the integral would be negative. It
was shown in [1] that, if M satisfies the null conjugate point condition, negative focussing
cannot occur. Hence, in this case, the integral is necessarily non-positive for all geodesics
A originating at some point a® on §1 which are sufficiently close to the generator a of &
on which a* lies. In this article, we show that this result in turn implies that the ADM
4-momentum is a (future pointing) causal vector. Thus, the intuition derived from the
Schwarzschild solution is indeed valid more generally.

Let us recall the structure available at i° . The asymptotic conditions of [2] imply
that the tangent space at 1° is well-defined and carries a (universal) Minkowskian metric
of signature (— + ++). Further, along any C? curve with tangent vector 7% at i® , Q% Cppea
admits a limit at ¢® , where C,j.q i1s the Weyl tensor of the unphysical metric g,5. We can
decompose the limit into its electric and magnetic parts using the unit space-like vectors
n® at 1° , and thus acquire two symmetric, traceless tensor fields E,,(n) and B,y(n) on the
hyperboloid H of unit space-like vectors at i° . (Note that, by their definition, the two fields
are tangential to M ). Let us focus on the asymptotic electric field, Eq;. It satisfies the
field equation Dj,Ey, = 0 on H , where D is the derivative operator compatible with the
natural metric hop = g% — 127 on ‘M , where ¢°,; is the Minkowski metric in the tangent
space at 1° . The information about the ADM 4-momentum P, is contained entirely in
Egp:

PV := - ¢ dS® E, Ve, (1)

where V¢ is any vector in the tangent space at {° and S is any 2-sphere cross-section of

H . (The field equation and the trace-free property of E,; imply that it is divergence-free

while the projection of V¢ into the hyperboloid (forced by its contraction with E,; in the

integrand) is a conformal Killing field on H , whence the surface independence of (1).)
The field equation on E,; also implies that it admits a scalar potential, E:

Ewy = Dy DyE + Ehgy (2.a)
In any given conformal completion, the potential E can in fact be constructed explicitly

from the asymptotic (unphysical) Ricci tensor. The fact that Eg; is trace-free implies that
E must satisfy the (tachyonic) massive scalar field equation:

D°D,E +3E =0 (2.b)
on H . In the Schwarzschild space-time with 4-momentum P, = mi,, with t.1 = -1, E is
given by: _

E =m 1+2(1.7])2 (3)

1+(t.n)?

More generally, in physically interesting situations, the asymptotic magnetic field Bgp
vanishes on H and the leading terms in the physical metric are dictated entirely by E:
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There exists a coordinate system in terms of which the physical metric has the asymptotic
form:

43 = (14 £)2dp + % (Roup + P2+ Egn ) dgodgP, (4)

with 'y, = Eh,y. Here h%p is the metric on the unit time-like hyperboloid in Minkowski
space. Thus, (p,$*) should be thought of as “asymptotically hyperboloidal” coordinates.

It is easy to check that the space of solutions to the equation D,DyE + Ehyp, = 0
is precisely 4-dimensional. The solutions are of the form E = K,7®, where K, is a fixed
vector in the tangent space of i° . Thus, there is some gauge freedom in the choice of
the potential; we can add to the natural potential E of E,;, any E without changing the
value of the field E,;. This freedom is intertwined with the fact that if one uses only
the asymptotic conditions of 2], there is some ambiguity in the conformal completion at
1° . Given a completion, one can obtain a four parameter family of inequivalent ones by
logarithmic translations. In the physical space language, there are the transformations of
the type:

z® — z% + K®logp, (5)

where z® are asymptotically Cartesian coordinates, p? = 2%z, and where K, are constants.
The new completions are C* related at i° . Therefore, 1° and the tangent spaces in the
two completions are naturally identified. Under this identification, the field E,; of one
completion 1s mapped to that of the second. The potentials E, however, are not preserved.
On H we have:

E— E+ K,n* and Eq. — Eap (6)

Since the field is unaffected, so is the ADM 4-momentum (and, to next order, also angular
momentum). Thus, the logarithmic translations may be thought of as “gauge” in this
framework. In a large class of space-times, this gauge freedom can be eliminated. Suppose,
as in (3], that the electric field E,; is reflection symmetric on X . Then, we can demand
that the potential should also be reflection symmetric. (Note that E of the Schwarzschild
solution (eq 3) automatically satisfies the condition. In Minkowski space the requirement
singles out the potential E = 0.) This requirement selects a unique potential and hence
removes the logarithmic ambiguity in the completion. As a part of the boundary conditions
at :° we assume that E,; is reflection symmetric and work in a completion in which the
potential F is also even under reflection.
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With this formalism at hand, let us return to the implication of [1] quoted at the
end of the first para. As the null geodesic A approaches the generator a in the completed
space-time (fig 2.4), the connecting vectors * become, in the limit, the position vectors
of points on a null geodesic (straight line) L in H , and the tangent vector I* is now
parallelly propagated w.r.t. hyp (fig 2.b). Since the argument of [1] tells us that integral
of Cabcdr)anclbld along X is non-positive, in the imit we conclude that fL ds Egplel® < 0.
Using the expression (2) of Eg, we have E,3l%l® = (1°D,)*E, so that the last condition
becomes:

Et - E <o, (7.a)

where E = I*D,E and + denote, respectively, the values at the future and past (ideal)
end points of L. Now, since E is reflection symmetric, the two terms on the left side of (6)
add and we have:

Et <. (7.5)

To see the implication of this condition, let us examine the asymptotic form of E. Let
us foliate the tangent space of i° by a family of planes t = const (with ¢ = —t%n,, with
t® unit future-timelike) and consider the corresponding foliation of H . Assuming that E
admits a power series expansion of the type 3 E(")(8,4) t~", where n runs from some
finite negative value to 400, the field equation implies that F must admit an asymptotic
expansion of the following type:

a (3)
t+ mylm(97¢) +E (0a¢) + ..

E(t,8,¢) = (a0 + amY1m)(6, ¢)) 2 13

(8)

where Y1,,(8, ¢) are the three £ = 1 spherical harmonics. (We believe the required assump-
tion is always satisfied in the reflection-symmetric case.) The condition E* < 0 implies
that the coefficient of the first term is non-negative and hence the 4-vector P, = aot* +V*
at 1° —with t* the above unit time-like vector orthogonal to the slices and the spatial vector
V% in the t = 0 shice, given by V%15, = a1, Y1 (6, #)- is future-directed and causal. At first,
we were misled into thinking that the coefficient of the first term is the mass-aspect at
the future end of H and therefore the argument would show that the mass-aspect should
be positive. This is incorrect. In fact, the electric field E,; constructed from the leading
order term (via eq (2.2)) vanishes identically whence the term makes no contribution what-
solever to the ADM 4-momentum integral. Rather, the mass-aspect is the third term,
E®) in the expansion. However, because we have restricted ourselves to even potentials
E, it does follow that the ADM 4-momentum P, constructed from the correct mass aspect
is precisely given by the vector P,, which resides in the leading order term. Therefore,
although we cannot conclude that the mass-aspect should be positive, (7.b) does indeed
imply that the ADM-4-momentum is a causal, future-directed vector.

We conclude with two remarks. First, one can show that the vector space obtained
by superposing the asymptotic mass~aspects of Schwarzschild solutions (3) (whose the 4-
momentum is not restricted to be time-like) is dense in the space of all asymptotic mass-
aspects E(®)(8, $) arising from smooth solutions to (2.b). We believe, furthermore, that the
same 1s true of the entire solutions F everywhere on H . Thus, in the reflection-symmetric
case, one can work with superpositions of (3) without loss of generality. The second remark
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has to do with the leading term in the asymptotic expansion (8). The fact that this term
diverges is an indication that there is a mis-match at :° between the following two limits:
sliding down a generator of ¥, and, approaching i° along a space-like direction and then
making an infinite boost. The mis-match is a measure of the ADM 4-momentum. There 1s
a similar mis-match in the way ¢~ is attached 10 7° . This mis-match should show up in the
metric coeflicients rather than the curvature. If one allows £ to acquire a non-symmetric
part under reflection, one can, by a logarithmic translation, remove the mis-match between
1° and . However, then the mis-match with ¢~ is twice as big. There is something
“cohomological” here: with one coordinate choice near ° , it appears that * matches
“smoothly” on to :® , whereas for another coordinate choice near 1° it would be £~ that
matches smoothly to :° . The 4-momentum represents the mismatch between these two
attempts at a smooth structure at :° . It would seem that these two choices correspond
to whether we use the intersections with £t or with £~ to represent light rays in the
space-time. There appears to be a relation to twistor theory here. A clearer treatment of
this issue i1s needed to make further progress in a proper understanding of asymptotically
flat space-times, e.g. along the lines initiated by Friedrich.

We have presented here only the overall picture. Some details are yet to be worked
out fully. Also, the results can probably be generalized in a number of ways. A more
complete account will appear elsewhere.
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Abstract

All ir?va.riant linear differential operators between bundles of sin-
gular weight on flat conformal manifolds are determined and shown

to_have analogues on general conformal manifolds, obtained by adding
.. suitable curvature correction terms.



