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Conventionally, time appears in quantum mechanics as a c-number parameter on which
physical quantities such as observables or states depend, but it is not itself an observable. This
relic of classical physics must of course be regarded as a stopgap. Eventually quantum gravity
will give us a unified theory of space-time and matter, from which in principle all dependence
of observables on non-observables can be eliminated.

Some models that have this property have already been constructed, notably by DeWitt! as a
way of making sense of canonical quantum gravity, and in a more hand-waving but more
accessible way by Page and Wooters? considering simple systems with quantum clocks. All
such models have in common a beautiful feature that is necessary but at first rather counter-
intuitive: The universe as a whole is at rest. That is, the quantum state |‘}’> of the universe as
a whole is an eigenstate of its Hamiltonian H. The reason why that is necessary is of course
that otherwise the Schrdinger equation would give |‘P>, and therefore physical quantities, a
dependence on an unphysical parameter ¢.

The observed phenomenon of quantities “changing with time” has nothing to do with any ¢-
dependence. It is a correlation phenomenon. Although (or rather because) the universe is in an
eigenstate of the Hamiltonian, it is not in an eigenstate of the position of hands on clocks, or of
any other observable that the inhabitants might measure to tell them the time. Therefore itis in a
superposition of such eigenstates, whose eigenvalues are the readings of clocks at different
instants. Under the Everett interpretation this means that different instants co-exist. The
division of the world into “instants of time” is just a special case of its division into Everett
branches (often, somewhat misleadingly, called “parallel universes”).

It seems to me that one of the most important types of time-dependence that we need to
understand, both technically and physically, is that which occurs in measurement. Therefore I
have tried to construct a model of a measurement process in a stationary universe. What
follows is entirely heuristic. In other words, I am not trying to prove anything, only to answer
the question, if time really is a quantum correlation phenomenon as just outlined, what might
the state and Hamiltonian look like, and how would it all work out?
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As usual in the theory of measurement, let us divide the universe into three quantum
subsystems:

(1) A system Sy, initially in state ), in which the observable X with spectrum Sp(X) is to
be measured. (What “initially” means will emerge below).

(2) An apparatus Sy, initially uncorrelated with Sy and in a receptive state |0). S, has an
observable A, with Sp(f() - Sp(f\), in which the measured value of_ X is to be stored.

(3) The rest of the universe, S3.

Conventionally, the measurement would be described using a time-dependent Hamiltonian H(r)
specifying an interaction between S; and S, with support only during the period 0 <t <T
(say), and not involving S4. If the measurement were perfect it would have the following
effect during that period:
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where the kets on the left and right of the “evolves-into” symbol “=” in (1) are the joint state
of S; and S, immediately preceding and immediately following the measurement interaction,
1.e. at times O and T respectively. The representation in (1) is in terms of simultaneous
eigenstates of X and A, labelled by the corresponding eigenvalues, and we are assuming for
convenience that the receptive state of S, is the eigenstate |0) of A.

If (as a further harmless idealization) I:I(t) = H, a constant operator, during the measurement,
K, % = i, 0y (Vxe SpX)). @)

That a Hamiltonian with this property exists follows from the unitarity of the required evolution
(1).

The above description of a measurement process is incomplete in that it does not model time
explicitly. The notions “before the measurement”, “during the measurement” and “after the
measurement”, as well as “the duration of the measurement” are integral to the description and
are all referred to as if they were observable quantities, but no quantum observable
corresponding to any of these quantities is described — in fact there is no such observable in
~systems Sy and S,. Moreover system S5 is described as not participating in the measurement
process, but it is implicitly required that something outside S; and S, “switch the interaction on
and off” at times 0 and T, to induce the necessary time-dependence in the dynamics of S; and
Sy,

Now we follow Page and Wooters and extend the model to include time as an observable. Let
h be the Hamiltonian of S5, the “rest of the world”, let |0y be some state of S5 and define
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for all real 1. Let Tbe a maximal set of real numbers such that the corresponding kets |f) are
orthonormal for all re 7. If |0) and h have suitable properties, 7 will be a large set,
approximating the real line in an appropriate physical sense, and there will exist an observable
T of 83 with Sp(T) = T,
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which, as shall see, can serve as a time observable. That there can exist observables ’T and h
with the properties just described may be shown by explicit construction: Given any set Tof
successive real numbers separated by intervals € and any set {|t)} of orthonormal states of S3
labelled by, among other things, the elements of 7, the observable
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would serve as h.

Suppose that S; starts in an arbitrary state |\y) uncorrelated with S, or S5.
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where
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If the S3-observable T as defined in (4) were really the “time” for systems S; and S,, we

should expect the universe as a whole, i.e. the system S,®S,®S;, to be in a state something
like
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where 6 is the function that takes the value 1 when its argument is a true proposition, and 0
otherwise. |‘}‘> 1s a fixed state with no time-dependence in the usual sense. Nevertheless if
we choose to refer to the eigenvalues of T as “times”, the (Everett) interpretation of |‘}‘> that
we read off from successive terms in its expansion (8) does describe motion:

At times before 0, the apparatus observable A has the receptive value 0 and X is multi-
valued. Between times 0 and 7, A becomes multi-valued in a way that is correlated
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with X. After time T, in each branch X has its original value and A has that same
value.

The complex amplitudes i, are arbitrary except that they satisfy
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in order to normalize |\P> and that presumably none of them vanishes. I have argued
elsewhere that there is no physical reason why a state such as |‘P> must be normalizable with
respect to the sum over times ¢ because the weight |u,|2 of an Everett branch corresponding to a
particular time is not the probability of anything. However if we were to allow non-
normalizable states we should have to go to the trouble of amending the Hilbert space
formalism to give meaning to representations such as (8) when the sum in (9) is divergent.
That is not worth doing for our present purposes because we shall not encounter any problem
in normalizing |‘P>

To say that Sp(i‘) should physically approximate the real line is to say that there should be many
eigenvalues ¢ of T in any interval over which quantities of interest vary significantly as
functions of ¢. Therefore the sums over ¢ in (8) and (9) should be replaceable by integrals.

We shall take
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where o is very small and positive so that y, varies very slowly over the interval of interest
(O<t<T) but nevertheless falls rapidly to zero as 1 — teo. Any function with those properties
would serve equally well in what follows.

Let P be the system-S3 projection operator
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for the time to lie between 0 and 7, i.e. for the period of the measurement. Consider the
Hamiltonian

H = A®P + 1®h (12)

for the universe (S;9S,)®s;. Like |‘P> this has no dependence on any time parameter — yet
if we use the term “evolve” to mean “change to successive eigenvalues of T”, we can say the
following about the dynamics of a universe governed by the Hamiltonian H:
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System Sg evolves independently under the Hamiltonian h. Systems S; and S, evolve
under the Hamiltonian H in all branches in which T has values between 0 and T, and do
not evolve at all otherwise.

Now it is easily seen that under the approximations stated above (i.e. sums over ¢ are replaced
by integrals and o is very small), |‘P> is a solution of the Schrdinger equation for a system
with Hamiltonian A — specifically it is an eigenstate of H with eigenvalue zero. From (3),
(8), (11) and (12),
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Because of the properties of p, as t — teo, the boundary term on integration by parts
vanishes, so
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Now, taking the kets { [r)} in (14) 1o be orthonormal (remember that the integral over ¢ is
really a sum over the values for which they are orthonormal) and using (7) and the
orthonormality of the eigenstates of X, we have
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as stated.

There is one difference between this model and that of Page and Wooters. In their model the
clock and the other subsystem were strictly non-interacting. In this model the “clock”, which
is S3, the “rest of the universe”, does interact with the other two systems (or rather, it acts on
them and they do not react back) and plays a realistic role in the measurement process.
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