¥

Twistor regularisation of ultra-violet divergences

In TN 29, and in my TMP review, | suggested that the introduction of
mhomogencotts boundarics ar mliZy into twistor diagrams should have
the potential to eliminate ultra-violet divergences, while retaining a
manifestly finite integral formalism. It's now possible to show this for a
special case of such a divergence, namely the Feynman diagram
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in massless cf?theory. To do this 1've gone back to the argument sketched
out in TN 28 . This argument was basically on the right lines, but what |
didn't see then was the essential role of conformal symmeltry breaking in
higher order Feynman diagram calculations - and this is the key factor.

In fact I should have noted that it's obvious that some such symmetry-
breaking musr come in. The regularisation of this divergent integral, as
achieved by conventional QFT methods, is of the form
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where p is the total ingoing (and outgoing) momentum and P is some
arbitrary mass. This doesn’t just break conformal invariance: it’s not even

scale invariant. Note that although one may not think of @¢* theory as
geunine physics, the integral being studicd here is essentially the same as
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in QED, and that the logarithmic factor in 7477 context corresponds to the
|zero-mass limit of the] Lamb shift - very well corroborated by experiment.
So we should consider the logarithm as a genuine physical feature, making
it imperative that some scale-breaking mechanism must be introduced. In
fact it's not hard to write down a twistor diagram which does this and
yields agreement with the logarithmic answer, namely
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where the boundaries are on 2x=p, WY =] ie they are inhomogeneous
boundarics at infinity, capable of breaking the scale invariance.
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This is very encouraging, as il agrees with the general "skeleton” pattern
postulated for the twistor version of Feynman diagrams. But can this
diagram be dersved - not just written down ad Aoc using knowledge of
the conventional regularised answer?

To analyse the problem, first note that in momentum space the Feynman
integral appears as the dlvergem integral
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where the integration is to be done according to the Feynman prescription.
By elementary complex analysis, this prescription means that at least
formally it 1s the same as
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Here the 5 functions are just on shell propagators, which can be thought
of as sums over a complete set of [ree states; thus we have
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These sums are divergent, but the tree diagrams themselves are supposed
to be finite, and the next thing 1 to study these tree diagrams in detail.

Much of this analysis has already been done in TN 25, and so I shall here
simply assert that using the information described there, the ¢ ¥ diagram
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1s a finite, conformally invariant functional of the fields and can be
represented exactly by the twistor diagram:
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It's quite another story with the other channel. Let's be specific and use
particular elcmentary states. Without loss of generality we can consider
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where p, r are in the past tube and q, s in the future tube. This must yield
a function F(p ,q ,r,s) satisfying
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The first difficulty is that the Feynman integral (3) is divergent, a problem
swept under the carpet in the conventional approach where 1/k? is called
"finite” although it's singular at k2 = 0. This means that we are driven first
to find 2 regularisatron for Lhfs lree diagram - a procedure quite unlike the
conventional approach. In doing this we can be guided by the
regularisation of the Maller scatiering divergence. This naturally suggests
the possibility that the divergence encountered here is regularised by the
inhomogeneous twistor integral: z '1,

Calculation shows however that this doesn't satisfy the differential
equation (2). In fact the two sides of the equation fail to match by [a

multiple of] {((t”?)z)z(‘l/’()L(\’"J)L j"!
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t follows that if we put .2 LQQ((F'?/)I)
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then this new F satisfies the essential equation (4). Note that a
scale breaking element has entered now. It now turns out that this revised
candidate for the regularised tree amplitude can be put in the form
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where the extra term contains inhomogeneous boundaries at infinity to do
the scale breaking. This looks very promising! It appears that we can now
sum over the states as required, 1.e. replace
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The conformally invariant expressions cancel leaving just the coniribution
from the scale-breaking part. Unfortunately this leads to exactly TWICE the
right answer (and so twice the right Lamb shift.) What's gone wrong? The
trouble is that we haven't shown that (6) is a genuine regularisation of the
divergent Feynman integral in (3); there could be other regularisations
which differ by solutions of the homogeneous equation
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Indeed (6) is NOT a genuine regularisation. This is demonstrated by the
fact that the interior of the diagram (5) doesn't satisfy the spin-0
eigenstate condition, i.e. that it's an eigenstate with eigenvalue 0 of
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whilst the scale-breaking diagram added on in (6) does satisfy it. This
means that the total functional of fields represented by (6) doesn't project
oul the spin-0 part of the fields meeting at a vertex - as it must Lo be a
genuine regularisation of (3).
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To cut a long story short, there DOES exist another completely finite
functional of the fields which satisfies both (4) and the relevant spin
eigenstate conditions. It can be represented by:

Note that scale-breaking inhomogeneous boundaries at infinity come into
the integral thus introduced. The resulting total functional of fields is still
not uniqucly fixed by thesc conditions, so some further characterisation of
satisfactory regularisation is stilf required. But I will assume that this is in
fact the right answer for the tree diagrams.

Now we can sum over states. The essential idea here is that these divergent
sums are also regularised by twistor diagram inhomogeneily - but this
time we only need a version of the "Mgller” mechanism. For instance we

can evaluate
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The basic reason for the finite answer is that in integrating out the states,
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so that the 'k’ saves the pole from meeting the boundary. This mechanism
can be applied consistently and this time we get the rugAr answer for the
loop integral, as there is now a partial cancellation between Lhe
scale-breaking terms.

I hope this analysis can be generalised to encompass all divergences
(including vacuum diagrams) systematically, but much more work is

nceded yet.
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