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A SPINOR FORMULATION FOR HARMONIC MORPHISMS
by
Paul Baird(*) and John C. Wood

0. Introduction

The aim of this paper is to draw attention to the simple description of harmonic
morphisms in terms of spinors, and to interpret the equations in terms of holomorphicity properties
of sections of twistor bundles.

Harmonic morphisms have been studied by mathematicians for some time. They are
defined as mappings between Riemannian manifolds which pull back germs of harmonic functions
to germs of harmonic functions. Equivalently they are the harmonic mappings which are
horizontally conformal (see [B1, B3, BW1] for details and further references). Thusif ¢ : M —
C is a mapping from a Riemannian manifold M (dim M 2 2) with values in the complex plane
C, then ¢ isa harmonic morphism if and only if
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where g = g2 is the metricon M and the I''s are the corresponding Christoffel symbols. The
first equation expressing horizontal conformality, the second harmonicity. In this note we
concentrate on the case when M < R* is an open subset of Euclidean 4-space. At the end we
indicate the Euclidean R3 case and the Minkowski M* case.

To a harmonic morphism ¢ : M — C, M < R%, we associate a pair of spinor fields
(€A, ™) defined on M . These satisfy the spinor equations
VAA‘{;AT]BI =0
(1.7
VAB.E,CnB' =0.
We interpret the projectivised fields [E2], [ in terms of Gauss sections. The pair ([EA], [nA])
then determines a section of the well known twistor bundle Z* xZ- over M (see [ES]). This ties
in with the description of the second author [W] for submersive harmonic morphisms from a
Riemannian 4-manifold to a surface. The equations (1.7) are then equivalent to holomorphicity
equations for that section. It is worth pointing out that the spinor formulation in this note does not
require the restriction that ¢ be submersive. This was necessary in [W] to guarantee a
decomposition of the tangent space into well-defined vertical and horizontal spaces at each point.
Thus we generalize here to arbirary harmonic morphisms.
As an additional comment we note thut a submersive harmonic morphism from a
Riemannian m-dimensional manifold M to a surface is locally equivalent to an (m-2)-dimensional
conformal foliation of M by minimal submanifolds. In the case when m =3, we can remove the

(*) Supported by an S.E.R.C. Advanced Fellowship.
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restriction 'submersive’ and the foliation is by geodesics. Such conformal foliations are the
Riemannian analogue of the well known shear-free null geodesic congruences, much studied by
relativists in connection with zero rest mass fields (see [BW2, 3] for details).

In [BW1,2] all harmonic morphisms from a three-dimensional simply connected space
form to a surface were determined. In these cases the harmonic morphisms are determined by
pairs of holomorphic functions, see also Tod [T1, 2].

Throughout we use spinors as descnibed in the Appendix of [PR, vol 2]. This enables
us to consider spinors defined on a vector space with metric of arbitrary signature.

1. Harmonic morphisms from R4 in terms of spinors

We consider R4 with its standard Euclidean metric. Vectors x2 may be expressed in
terms of spinors by the correspondence:

ix0+x!  x2+ix3
(XO: xl’ x2, X3) &> '_I' = XAA'.

2\ x2-i3  ix0-x!
Writing d, = d/0x? , the spinor covariant derivatives V AA' 4re given by
V. =-1(id, +d,)
00 0" Y
2
2
Vi = _J‘: @,+i9,)
2
V. =21 (-id.-9)
11 Iz 0”9/ -

Now let M c R4 be an open subset, and recall that ¢ : M — C is horizontally
conformal if and only if

L S(2) .0,
a ax

and ¢ is harmonic if and only if
2
d
(1.2) 2 ?2 =0.
a (ax )
So ¢ is a harmonic morphism if and only if (1.1) and (1.2) are satisfied. Let $: M — C bea

smooth mapping. From equation (1.1) we immediately deduce that ¢ is horizontally conformal if
and only if

(13) Vaad = Eally

for some spinor fields £,, N4 definedon M.

Remarks 1) We always have the freedom (§4, 15 — (AEp, (1/AN ), A e C.
2) Atacritical pointof ¢,V .0 =0 andoneof &, is zero.

3) Equauon (1.1) is the condition that the gradient be a complex null vector field. That is
V6.Vé = 0.
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Since (1.2) 1s equivalent to VAA'VAA-Q) =0, we have that, if ¢ is horizontally

conformal, so that V20 =E&n 4 for spinors Ea» N » then ¢ is harmonic if and only if
(1.4) VARE Ma = 0.

Conversely, given a pair of spinor fields 4,7, on M, we would like conditions
which ensure they determine a harmonic morphism. Now the product E AT o determines a null
vector field v, . We require V (,vp) 10 be zero. This is computed to be equivalent to the six
spinor equations: :
(1) V]]'é]nll - Voo'éono'
(i1) V()]'éonll - V]()'élno'
(i) Vpp&®n! =
(1.5) (iv) VpEhnY

() Vogtn® =
vi) Vig€hn®

Combining (1.4) and (1.5) we obtain

Il
()

it

0
0
0
0

(1.6) Theorem There is a correspondence berween (i) harmonic morphisms ¢ :M — C,

| M c R4, and (ii) pairs of spinor fields (X;A, nA') on M satisfying the spinor equations:
Vaagtm® =0

(1.7)
VAB.E,CnB' =0.

Proof Itis clear that (1.7) implies equations (1.4) and (1.5). Conversely, suppose we consider

the first of equations (1.7) with A'=B'=0. Then

Vootn® + V1m0 = (Vo&® + v & + v €Y + Vo, 0172 by (1.5) (i) and (i)

=0 by (1.4).
The other equations are proved similarly.

Remark In terms of the geometric description of [PR]. Ateach point x € M where V4,00,
EA(x) determines an a-plane a(x) on the quadric Qp c CP3, and M«(x) determines a B-plane
B(x). Then o(x), B(x) intersect in a point of Q. This point corresponds (under the
identification of Q, with the Grassmannian of oriented 2-planes in R%) to a real 2-plane through

the origin in R4. This plane is the vertical space at x (the tangent to the fibre of ¢ through x),
rranslated to the ongin.

2. Examples

Particular examples of hirmonic morphisms ¢ : R — C are given by maps which are
holomorphic with respect 1o one of the Kiihler structures on R, Euch Kiihler structure arises
from the standard one obtained by identifying R* = € x C , and composing with an isometry.

Use coordinates (z, w) for Cx C,sothat z=xY+ix!, w=x2+ix3 Then
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$: M — C, M < R4, is holomorphic if and only if
¢ _ 9 _

2z ow
if and only if
Vogd = Vg = 0.
Then clearly det V5,4 = 0 and 3
0 * *»\(0 %)

Vaad = =
0 * *

sothat g = (0 A), forsome A e C. Similarly ¢ is -holomorphic if and only if 1g. = (1 0)
for some e C. We now consider the effect of an isometry on the spinor decomposition of
Vaad-
There is a well known double cover SU(2) x SU(2) — SO(4). Suppose that 8 €

SO(4) and define 76= ®o0. Then Vi(x) = VOO(x)00. If (A, B)e SUR) x SUQ)
covers 0, then the induced action on spinors is given by

Eala = AGaNaB*,
where B* =BT so that

(Eq-MaY = (AL, My B*)
(.e. EA(O(X)) = A(éA(x)) and ?]JA,(B(X)) = (nA-(x))B*). Note that under the equivalence
Ear NA) ~ (AE 4, Ma/A), this is independant of the choice of (A, B) covering 6 . In particular
we see that ¢ : M — C is holomorphic with respect to a Kahler structure obtained from the
standard one by an orientation preserving isometry if and only if [n,] € CP! is constant.
Similarly ¢ is *holomorphic with respect ta a Kihler structure obtained by an orientation
reversing isometry if and only if [§,] € CP! is constant. To summarize.

(2.1) Theorem If ¢:M — C, M < R* open, is a harmonic morphism, then ¢ is
+holomorphic with respect to one of the Kdhler structures on R4 if and only if either [N,] or

[EAl is constant.

Another class of examples are those which have torally geodesic fibres. These are
classified in [BW1]. If ¢ : M — C, M open in R4, is a harmonic morphism with totally geodesic
fibres, let N denote the leaf space of the fibres. Locally and in favourable circumstances globally,
N can be given the structure of a smooth Riemann surface and ¢ is given implicitly by the
equation

o(O0XO + 0 (DEOIXT + 0@ + a3 (o(x)x3 = 1,
where x = (x9, x!, x2, x3), a = (1/2h)(1 - £2- g2,i(1 + 2 + g2), -2f,-2g) and f, g, h: N -
Cleo are meromorphic functions. In this case it is easily checked that §, ,m . are given by

) 1 f-i
Ca = ‘—/———1\/5(&“) A ( ig)
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1

N, = ——
§ JJZ@xh

(here f, g and h are evaluated at m(x), where = is projection onto N).
Note that in general neither of these are projectively constant and so the harmonic

-if+g 1)

morphisms are not tholomorphic. It is not known whether (1.7) has any solutions globally

defined on R? apart from those with [§ Al or [Na] constant, such solutions would define new
harmonic morphisms from R4 to C.

3. Interpretation in terms of twistor bundles

Here we relate our spinor description to the description given by the second author [W]
in terms of twistor bundles, thus interpreting the equations (1.7) in terms of holomorphicity
properties of Gauss sections. We briefly summarize the results of [W].

Let V be a 2-dimensional distribution in an oriented 4-dimensional Riemannian
manifold M, and let H be the corresponding orthogonal 2-dimensional distribution. We may
locally choose orientations for each V,, H,, x € M, so that the combined orientation of V, & H,
=T,M is that of M. We then define almost complex structures JV, JH on each V,, H, tobe
rotation through 7/2. Note that changing the orientation of V, changes that of H, and replaces
(JV, JH)y by (-JV,-JH) . All results below will be independant of this change, so that there is no
loss of generality in assuming JV, JH are globally chosen.

The Gauss section of V,7y: M — G,(TM) then maps into the Grassmannian of oriented
2-planes in TM. The almost complex structures JV and JH combine to give almost complex
structures J! = (JV, JH) and 32 = (-JV, JH) oneach T,M. Note that J1 is compatible with the
orientation, i.e. there exists an oriented basis of the form ey, Jley, €9, Jle,, whereas J2is
incompatible. Let Z* (resp. Z-) be the fibre bundle over M whose fibre at x is all metric almost
complex structures on T,M which are compatible (resp. incompatible) with the orientation; these
are the well-known twistor bundles of M [ES]. The distribution V defines section yl ‘Mo Zt
and ¥2: M — Z" by y(x) = J1, ¥%(x) = J2 (where J1, J2 both acton T,M). Note thatif M is
an open subset of Euclidean space R4, the twistor bundles are trivial Z£ =M x S2 and there is a
well-known holomorphic bijection Go(R%) = §2 x S2,

Given a submersive harmonic morphism M4 — surface, the tangent spaces to its fibres
give an integrable, minimal and conformal diswribution.

(3.1) Theorem [W] Let V be a 2-dimensional distribution on a 4-dimensional Riemannian
manifold M. Then V is integrable, minimal and conformal if and only if the section v': M —
Z* is holomorphic with respect to the almost complex structure 12 on M and the section yz M
— Z° is -holomorphic with respect to the almost complex structure J' on M.

Now let ¢ : M — C be a submersive harmonic morphism from an open subset M of
R4. Then the tangent planes to the fibres determine a 2-dimensional distribution V on M. At
each point x, V, is given by
(030, -020, 019, -0l € Q, < CP3,
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where Q, = G(R%) is the standard identification of the Grassmannian with the complex quadric.
Then a direct computation verifies that v = Ml and 72 = [E,A] in terms of the spinor
decomposition V40 =EaN 4~
Write W = V¢, then
W0+ Wi W24 iw3 N (ol
|
Wa L34 \)':2: | =
w2-iw3d  iwl. wi gl
and at each point xe M,
W] = [HEMT+ &MY, & - gt &l + 0, i - £ 1)) e CP3.
But the standard identification CP! x CP! — Q, < CP? is given by
(8% 1, % ') — [EN + &M, e - g, g0 + EinD, i€ I - g1y
Thus, identifying CP! with Cuee by stereographic projection [E0, E1] — E/E! etc., we find
powReiw? iwtew o wWEiw? il e W
3.2) v 0 T 2 70 1= 0 1T 2 '
w’ow o wiiw Wt oW wheiw?
Writing the spinor equations (1.7) in terms of W | they take the form
() (-idg + WO + W) + (9, +193)(W2-iW3) = 0
(i) (-idy + O (W2 +iW3) + (3, +103)(W0 - W1y =
(i) (95 - i03)(AWO + W) + (-idg - 9))(W2 - iW3)
({v) (9 - i03)(W2 +1W3) + (-idg- 9(IWO - W1)

o OO

3.3

) (v) (-idg + IDEWO + W) + (3, - id3)(WZ +iW3)
(vi) (-idy + (W2 -iW3) + (95 - id3)(iW0 - W)
(vii) (9 +193) (WO + W) + (-idg- 9 (W2 +iW3) =
(viii) (97 +i093) (W2 - iW3) + (-idy- oDAWO - Wl =

|
oo OO

Remark Of course these are equivalentto V,W2=0 and V [;Wy; =0, expressing harmonicity

and integrability respectively.

In order to show that equations (3.3) imply the holomorphicity results of Theorem (3.1),
we consider a point x and suppose without loss of generality that d,,dy span V, . then
W2 +iW3 = W2.iW3 = 0 at x. Since the fibres of ¢ are minimal [BE], we also have
W2 +93W3 =0 at x. In particular at x

(37 - 103)(W2 +iW3) = (d) +i}(W2-iW3) = 0
by minimality and integrability of the fibres.
Consider y! = (W2 + iw3)/(iW0 - W1) . Then at x
(-idy - 9 )WY -wh =0
by (3.3)(vii1). By horizontal conformality
(WO + iWhHWO - iwly = (W2 + iw3)(W2 - iw3) .
Soat x,either WO+ iw! =0 or WO-iW!=0. Suppose WO-iW!l =0, in which case
WO +iWl 0. Then

(WO iW1H(0y + id) (WO +iWhH + (WO 5 iWDH(d, + i03)(WO - iwhy = 0

at x, so that
(0r + i)W+ W = 0
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at x . Now (3.3)(vii) implies
(-idy - OD(W2 +iW3) = 0,
so that
(-idg- 0y = 0
and y! is horizontally -holomorphic.

Writing ¥ = (W0 + W1/(W2 - iW3) , a similar computation shows that (d, +id3)y! =
0 and y! is vertically holomorphic. Similarly P is horizomally -holomorphic and vertically
-holomorphic. If on the other hand WO +iW1 =0, then the holomorphicity conditions are
reversed.. We have therefore shown directly that the spinor equations (1.7) give the equations of
Theorem (3.1).

Conversely given a 2-dimensional distribution which is conformal, then it determines a
null vector field which can be described by spinor fields &4, T, . If the corresponding Gauss
maps satisfy the holomorphicity equations of Theorem (3.1), then by that theorem the distribution
is integrable and minimal and the spinor fields &4, 1 5. satisfy equations (1.7).

This gives an interpretation for the spinor fields and equations of Theorem (1.6). The

advantage of Theorem (1.6) over Theorem (3.1) 1s that it is valid for arbitrary harmonic morphisms
(i.e. those with critical points). "

4. Minkowski space

We consider amap ¢ : U — C, U open in Minkowski space M4, satisfying the
equations:

@.1) (©o®)? - (010)% - (00)? - (33¢)? = 0
(4.2) 929 - 9120 - 920 - d32¢ = 0.
The spinor correspondence is given by
X0+ xl xZ+ix3
x4 “ xaa = L

7\ x2-ix3 x0 - x1
Exactly as for the R4 case we obiain

(4.3) Theorem There is a correspondence berween

(1) mappings ¢ YU — C sauisfying equations (4.1) and (42) and

(ii) pairs of spinor fields (E8, ™) on U satisfying the spinor equations:
Vaain® =0
VAB'éCnB. = O.

5. The Euclidean R3 case

We define the spinor correspondence by
x2+ix3  xl
xd = (x] x2, x3) & - ~ xAB
N 1 24 ix3
-X -X< + 11X
Define the differential operators Dap by
Doy = (09 - 1072
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Doy = -31/\2
Dy = -9)\2
Dy; = (-9 - i0V2.

These agree with [S], equation (14). Let M C R3 be an open subset and suppose ¢ : M — C is
a smooth mapping. Then, as for the R* case, béing horizontally conformal is equivalent 1o
nullity of Dagd which 1s equivalent 1o

5.1 Dapd = E458

for some spinor field £, on M.

If ¢ is horizontally conformal, so that Dapd = E,&p, then ¢ is harmonic if and only
if
(5.2) DARERER = 0
(if and only if EBDAREA = 0).

Conversely, as in [S], given a spacial null vector field v = pApB, then curl v is given
by -iV2DC(AL B . Combining this with equation (5.2) we obtain

(5.3) Theorem There is a correspondence berween harmonic morphisms ¢ :M - C, M
openin R3,and spinor fields £E5 on M saisfying
(5.4) DAgEAEC = 0.

Note: A spinor field yAB = EAEB satisfying (5..4) may be interpreted as a null, source free,
time independant solution to Maxwell's equations. This is in fact clear by expressing Vo =E +iB
in real and imaginary parts. Then horizontal conformality implies EB=0,curl E=curl B=0 is

automatic and harmonicity gives divE=divB=0.

Given a harmonic morphism ¢ : M — C, M openin R3, we can associate a Gauss
map Y:M — S2, given by y(x) = unit positive tangent to the fibre of ¢ through x (see [B2,
BW11). Infact y extends smoothly across critical points [BW3]. Then itis easily checked that in
the chart given by stereographic projection $2 — Cleo, ¥ is represented by £y/&;. The equation
(5.4) now has the simple interpretation of (1) minimality of the fibres, and (ii) horizontal
holomorphicity of the Gauss map y[B2, W].

Harmonic morphisms from open subsets of Euclidean space R3 have been completely
classified in [BW1]. Infactlocally ¢ is given implicitly by an equation

o QOOXT + 0,@NX2 + oGO3 = 1,
where o = (1/2h)(1 - g2, (1 + gQ), -2g) and h, g are meromorphic functions on a certain

Riemann surface N (the leaf space of the corresponding folitation). In this case the corresponding
spinor field is seen to be

(5.5) - L (= &),

: éA V ﬁa'.x ( \/F \/F

where g and h are functions of m(x) where 7w is projection onto the leaf space N . By aresult
in [BW1], the only harmonic morphisms defined globally on R3 with values in a Riemann
surface are given by an orthogonal projection followed by a weuakly conformal map. In this case
after appropriate choices of coordinates, N =C, g 1sconstant and h(z) =z . In particular this is



true if and only if [E4] is constant.

Remark There is an interesting connection between harmonic morphisms ¢ : M — C ;M open
in R3, and solutions to the Bogomolny equations (magnetic monopoles). For both are classified
in terms of holomorphic curves in the compex surface TS2 [BW1, H]. For examples such as the
axially symmetric solutions of Prasad and Rosst, the region of physical interest appears to be the
envelope of the fibres of the harmonic morphism. These are precisely the points x where

o'.x =0 [B2, BW1] and so correspond to the singularites of the spinor field given by (5.5).
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