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Mass Positivity from Focussing and the Structure of :°

Recently, one of us (RP in TN 30, [1]) outlined an argument to show that in asymp-
totically simple space-times,satisfying a certain assumption, the mass is non-negative. The
assumption —the null conjugate point condition— requires that every endless null geodesic
contain a pair of conjugate points. This condition is physically reasonable. It is implied
by completeness of null geodesics, a weak energy condition (T,31%1° > 0 if {,1° = 0) and
genericity. The purpose of this contribution is to examine more closely what it is about
the structure of spatial infinity, :° , that the argument establishes. In particular, we will
be able to establish that the mass in question is indeed the ADM mass at ° . More
precisely, our main result is that the ADM 4-momentum P, of an asymptotically simple
space-time satisfying the null conjugate point condition is necessarily a future-causal (or
zero) 4-vector at :° . (In this article, the assumption of asymptotic simplicity will include,
in addition to asymptotic flatness at null infinity, that at spatial infinity. Thus, we assume
that the space-time is AEFANSI in the sense of [2] and that the parity condition of {3] is
satisfied at 1° .) '

Let us begin by reviewing the result presented in [1]. Let M be an asymptotically
simple space-time. Fix a point @™ on the future null infinity §* of M. Let it Lie on the
generator & of §. The past-directed light rays from o will be said to focus negatively if
they meet §~ in a family of points which recede indefinitely into the past (i.e., towards
i7) as these rays approach a. Let us suppose that this occurs. Then, if we examine the
light rays neighbouring a given ray A through a™, as X approaches «, the total shear of
these rays along A has the form of a convergence in the radial direction and a divergence
in the transverse direction.

wegative
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(See fig 1.6). This is the behavior encountered in the negative mass Schwarzschild solution.
In the positive mass Schwarzschild space-time, the situation is Just the opposite. Now, we
encounter positive focussing. In this case, light rays from ot meet ¥~ in a family of
points that approaches i® as the rays approach a, there is a divergence of rays in the radia
direction and convergence in the transverse direction. Thus, if we move in radially, the ray
spray away from each other as i° is approached, whereas transversally they pinch toward
one another. (See fig 1.8.) Now, as the null geodesic ) gets closer to a, various non-linea
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terms die off and the shear is given by the integral, f/\ ds Copeal®ln®n?, evaluated along A,
where [ is a parallelly propagated tangent to A, s the corresponding affine parameter, and
where 1® is the radial connecting vector. Thus, if negative focussing occurs, the integral
would be positive and if positive focussing occurs, the integral would be negative. It
was shown in [1] that, if M satisfies the null conjugate point condition, negative focussing
cannot occur. Hence, in this case, the integral is necessarily non-positive for all geodesics
A originating at some point a® on §1 which are sufficiently close to the generator a of &
on which a* lies. In this article, we show that this result in turn implies that the ADM
4-momentum is a (future pointing) causal vector. Thus, the intuition derived from the
Schwarzschild solution is indeed valid more generally.

Let us recall the structure available at i° . The asymptotic conditions of [2] imply
that the tangent space at 1° is well-defined and carries a (universal) Minkowskian metric
of signature (— + ++). Further, along any C? curve with tangent vector 7% at i® , Q% Cppea
admits a limit at ¢® , where C,j.q i1s the Weyl tensor of the unphysical metric g,5. We can
decompose the limit into its electric and magnetic parts using the unit space-like vectors
n® at 1° , and thus acquire two symmetric, traceless tensor fields E,,(n) and B,y(n) on the
hyperboloid H of unit space-like vectors at i° . (Note that, by their definition, the two fields
are tangential to M ). Let us focus on the asymptotic electric field, Eq;. It satisfies the
field equation Dj,Ey, = 0 on H , where D is the derivative operator compatible with the
natural metric hop = g% — 127 on ‘M , where ¢°,; is the Minkowski metric in the tangent
space at 1° . The information about the ADM 4-momentum P, is contained entirely in
Egp:

PV := - ¢ dS® E, Ve, (1)

where V¢ is any vector in the tangent space at {° and S is any 2-sphere cross-section of

H . (The field equation and the trace-free property of E,; imply that it is divergence-free

while the projection of V¢ into the hyperboloid (forced by its contraction with E,; in the

integrand) is a conformal Killing field on H , whence the surface independence of (1).)
The field equation on E,; also implies that it admits a scalar potential, E:

Ewy = Dy DyE + Ehgy (2.a)
In any given conformal completion, the potential E can in fact be constructed explicitly

from the asymptotic (unphysical) Ricci tensor. The fact that Eg; is trace-free implies that
E must satisfy the (tachyonic) massive scalar field equation:

D°D,E +3E =0 (2.b)
on H . In the Schwarzschild space-time with 4-momentum P, = mi,, with t.1 = -1, E is
given by: _

E =m 1+2(1.7])2 (3)

1+(t.n)?

More generally, in physically interesting situations, the asymptotic magnetic field Bgp
vanishes on H and the leading terms in the physical metric are dictated entirely by E:
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There exists a coordinate system in terms of which the physical metric has the asymptotic
form:

43 = (14 £)2dp + % (Roup + P2+ Egn ) dgodgP, (4)

with 'y, = Eh,y. Here h%p is the metric on the unit time-like hyperboloid in Minkowski
space. Thus, (p,$*) should be thought of as “asymptotically hyperboloidal” coordinates.

It is easy to check that the space of solutions to the equation D,DyE + Ehyp, = 0
is precisely 4-dimensional. The solutions are of the form E = K,7®, where K, is a fixed
vector in the tangent space of i° . Thus, there is some gauge freedom in the choice of
the potential; we can add to the natural potential E of E,;, any E without changing the
value of the field E,;. This freedom is intertwined with the fact that if one uses only
the asymptotic conditions of 2], there is some ambiguity in the conformal completion at
1° . Given a completion, one can obtain a four parameter family of inequivalent ones by
logarithmic translations. In the physical space language, there are the transformations of
the type:

z® — z% + K®logp, (5)

where z® are asymptotically Cartesian coordinates, p? = 2%z, and where K, are constants.
The new completions are C* related at i° . Therefore, 1° and the tangent spaces in the
two completions are naturally identified. Under this identification, the field E,; of one
completion 1s mapped to that of the second. The potentials E, however, are not preserved.
On H we have:

E— E+ K,n* and Eq. — Eap (6)

Since the field is unaffected, so is the ADM 4-momentum (and, to next order, also angular
momentum). Thus, the logarithmic translations may be thought of as “gauge” in this
framework. In a large class of space-times, this gauge freedom can be eliminated. Suppose,
as in (3], that the electric field E,; is reflection symmetric on X . Then, we can demand
that the potential should also be reflection symmetric. (Note that E of the Schwarzschild
solution (eq 3) automatically satisfies the condition. In Minkowski space the requirement
singles out the potential E = 0.) This requirement selects a unique potential and hence
removes the logarithmic ambiguity in the completion. As a part of the boundary conditions
at :° we assume that E,; is reflection symmetric and work in a completion in which the
potential F is also even under reflection.
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With this formalism at hand, let us return to the implication of [1] quoted at the
end of the first para. As the null geodesic A approaches the generator a in the completed
space-time (fig 2.4), the connecting vectors * become, in the limit, the position vectors
of points on a null geodesic (straight line) L in H , and the tangent vector I* is now
parallelly propagated w.r.t. hyp (fig 2.b). Since the argument of [1] tells us that integral
of Cabcdr)anclbld along X is non-positive, in the imit we conclude that fL ds Egplel® < 0.
Using the expression (2) of Eg, we have E,3l%l® = (1°D,)*E, so that the last condition
becomes:

Et - E <o, (7.a)

where E = I*D,E and + denote, respectively, the values at the future and past (ideal)
end points of L. Now, since E is reflection symmetric, the two terms on the left side of (6)
add and we have:

Et <. (7.5)

To see the implication of this condition, let us examine the asymptotic form of E. Let
us foliate the tangent space of i° by a family of planes t = const (with ¢ = —t%n,, with
t® unit future-timelike) and consider the corresponding foliation of H . Assuming that E
admits a power series expansion of the type 3 E(")(8,4) t~", where n runs from some
finite negative value to 400, the field equation implies that F must admit an asymptotic
expansion of the following type:

a (3)
t+ mylm(97¢) +E (0a¢) + ..

E(t,8,¢) = (a0 + amY1m)(6, ¢)) 2 13

(8)

where Y1,,(8, ¢) are the three £ = 1 spherical harmonics. (We believe the required assump-
tion is always satisfied in the reflection-symmetric case.) The condition E* < 0 implies
that the coefficient of the first term is non-negative and hence the 4-vector P, = aot* +V*
at 1° —with t* the above unit time-like vector orthogonal to the slices and the spatial vector
V% in the t = 0 shice, given by V%15, = a1, Y1 (6, #)- is future-directed and causal. At first,
we were misled into thinking that the coefficient of the first term is the mass-aspect at
the future end of H and therefore the argument would show that the mass-aspect should
be positive. This is incorrect. In fact, the electric field E,; constructed from the leading
order term (via eq (2.2)) vanishes identically whence the term makes no contribution what-
solever to the ADM 4-momentum integral. Rather, the mass-aspect is the third term,
E®) in the expansion. However, because we have restricted ourselves to even potentials
E, it does follow that the ADM 4-momentum P, constructed from the correct mass aspect
is precisely given by the vector P,, which resides in the leading order term. Therefore,
although we cannot conclude that the mass-aspect should be positive, (7.b) does indeed
imply that the ADM-4-momentum is a causal, future-directed vector.

We conclude with two remarks. First, one can show that the vector space obtained
by superposing the asymptotic mass~aspects of Schwarzschild solutions (3) (whose the 4-
momentum is not restricted to be time-like) is dense in the space of all asymptotic mass-
aspects E(®)(8, $) arising from smooth solutions to (2.b). We believe, furthermore, that the
same 1s true of the entire solutions F everywhere on H . Thus, in the reflection-symmetric
case, one can work with superpositions of (3) without loss of generality. The second remark
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has to do with the leading term in the asymptotic expansion (8). The fact that this term
diverges is an indication that there is a mis-match at :° between the following two limits:
sliding down a generator of ¥, and, approaching i° along a space-like direction and then
making an infinite boost. The mis-match is a measure of the ADM 4-momentum. There 1s
a similar mis-match in the way ¢~ is attached 10 7° . This mis-match should show up in the
metric coeflicients rather than the curvature. If one allows £ to acquire a non-symmetric
part under reflection, one can, by a logarithmic translation, remove the mis-match between
1° and . However, then the mis-match with ¢~ is twice as big. There is something
“cohomological” here: with one coordinate choice near ° , it appears that * matches
“smoothly” on to :® , whereas for another coordinate choice near 1° it would be £~ that
matches smoothly to :° . The 4-momentum represents the mismatch between these two
attempts at a smooth structure at :° . It would seem that these two choices correspond
to whether we use the intersections with £t or with £~ to represent light rays in the
space-time. There appears to be a relation to twistor theory here. A clearer treatment of
this issue i1s needed to make further progress in a proper understanding of asymptotically
flat space-times, e.g. along the lines initiated by Friedrich.

We have presented here only the overall picture. Some details are yet to be worked
out fully. Also, the results can probably be generalized in a number of ways. A more
complete account will appear elsewhere.
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Conformally Invariant Operators:
Singular cases.

R. J. Baston
Mathematical Institute
Oxford
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Abstract

All ir?va.riant linear differential operators between bundles of sin-
gular weight on flat conformal manifolds are determined and shown

to_have analogues on general conformal manifolds, obtained by adding
.. suitable curvature correction terms.
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A measurement process in a stationary quantum system

by David Deutsch

Oxford University Mathematical Institute
24-29 St Giles, Oxford OX1 3LB

October 1990

Conventionally, time appears in quantum mechanics as a c-number parameter on which
physical quantities such as observables or states depend, but it is not itself an observable. This
relic of classical physics must of course be regarded as a stopgap. Eventually quantum gravity
will give us a unified theory of space-time and matter, from which in principle all dependence
of observables on non-observables can be eliminated.

Some models that have this property have already been constructed, notably by DeWitt! as a
way of making sense of canonical quantum gravity, and in a more hand-waving but more
accessible way by Page and Wooters? considering simple systems with quantum clocks. All
such models have in common a beautiful feature that is necessary but at first rather counter-
intuitive: The universe as a whole is at rest. That is, the quantum state |‘}’> of the universe as
a whole is an eigenstate of its Hamiltonian H. The reason why that is necessary is of course
that otherwise the Schrdinger equation would give |‘P>, and therefore physical quantities, a
dependence on an unphysical parameter ¢.

The observed phenomenon of quantities “changing with time” has nothing to do with any ¢-
dependence. It is a correlation phenomenon. Although (or rather because) the universe is in an
eigenstate of the Hamiltonian, it is not in an eigenstate of the position of hands on clocks, or of
any other observable that the inhabitants might measure to tell them the time. Therefore itis in a
superposition of such eigenstates, whose eigenvalues are the readings of clocks at different
instants. Under the Everett interpretation this means that different instants co-exist. The
division of the world into “instants of time” is just a special case of its division into Everett
branches (often, somewhat misleadingly, called “parallel universes”).

It seems to me that one of the most important types of time-dependence that we need to
understand, both technically and physically, is that which occurs in measurement. Therefore I
have tried to construct a model of a measurement process in a stationary universe. What
follows is entirely heuristic. In other words, I am not trying to prove anything, only to answer
the question, if time really is a quantum correlation phenomenon as just outlined, what might
the state and Hamiltonian look like, and how would it all work out?

1 DeWitl, B.S. Phys. Rev. 160 1967.
2 page, D.M. and Wooters, W. Phys. Rev. D27 1983,



As usual in the theory of measurement, let us divide the universe into three quantum
subsystems:

(1) A system Sy, initially in state ), in which the observable X with spectrum Sp(X) is to
be measured. (What “initially” means will emerge below).

(2) An apparatus Sy, initially uncorrelated with Sy and in a receptive state |0). S, has an
observable A, with Sp(f() - Sp(f\), in which the measured value of_ X is to be stored.

(3) The rest of the universe, S3.

Conventionally, the measurement would be described using a time-dependent Hamiltonian H(r)
specifying an interaction between S; and S, with support only during the period 0 <t <T
(say), and not involving S4. If the measurement were perfect it would have the following
effect during that period:

. 0 o xy (Yxe SpX)) (1)

where the kets on the left and right of the “evolves-into” symbol “=” in (1) are the joint state
of S; and S, immediately preceding and immediately following the measurement interaction,
1.e. at times O and T respectively. The representation in (1) is in terms of simultaneous
eigenstates of X and A, labelled by the corresponding eigenvalues, and we are assuming for
convenience that the receptive state of S, is the eigenstate |0) of A.

If (as a further harmless idealization) I:I(t) = H, a constant operator, during the measurement,
K, % = i, 0y (Vxe SpX)). @)

That a Hamiltonian with this property exists follows from the unitarity of the required evolution
(1).

The above description of a measurement process is incomplete in that it does not model time
explicitly. The notions “before the measurement”, “during the measurement” and “after the
measurement”, as well as “the duration of the measurement” are integral to the description and
are all referred to as if they were observable quantities, but no quantum observable
corresponding to any of these quantities is described — in fact there is no such observable in
~systems Sy and S,. Moreover system S5 is described as not participating in the measurement
process, but it is implicitly required that something outside S; and S, “switch the interaction on
and off” at times 0 and T, to induce the necessary time-dependence in the dynamics of S; and
Sy,

Now we follow Page and Wooters and extend the model to include time as an observable. Let
h be the Hamiltonian of S5, the “rest of the world”, let |0y be some state of S5 and define

9 = ey ©



for all real 1. Let Tbe a maximal set of real numbers such that the corresponding kets |f) are
orthonormal for all re 7. If |0) and h have suitable properties, 7 will be a large set,
approximating the real line in an appropriate physical sense, and there will exist an observable
T of 83 with Sp(T) = T,

T= Y, )

te T

which, as shall see, can serve as a time observable. That there can exist observables ’T and h
with the properties just described may be shown by explicit construction: Given any set Tof
successive real numbers separated by intervals € and any set {|t)} of orthonormal states of S3
labelled by, among other things, the elements of 7, the observable

~ilog[ 2|t+e)(q] (5)
€ te T

would serve as h.

Suppose that S; starts in an arbitrary state |\y) uncorrelated with S, or S5.

DEEDY ©)

xe $pR)

where

ZIMP = 1 (7

xe SpR)

If the S3-observable T as defined in (4) were really the “time” for systems S; and S,, we

should expect the universe as a whole, i.e. the system S,®S,®S;, to be in a state something
like

) = E :M Zu,[G(KO)pc, 0) + 8(0sr<T)eiPlix, 0y + 6(>THpx, x| |0 ()
te Sp(h
xe SpX)

where 6 is the function that takes the value 1 when its argument is a true proposition, and 0
otherwise. |‘}‘> 1s a fixed state with no time-dependence in the usual sense. Nevertheless if
we choose to refer to the eigenvalues of T as “times”, the (Everett) interpretation of |‘}‘> that
we read off from successive terms in its expansion (8) does describe motion:

At times before 0, the apparatus observable A has the receptive value 0 and X is multi-
valued. Between times 0 and 7, A becomes multi-valued in a way that is correlated
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with X. After time T, in each branch X has its original value and A has that same
value.

The complex amplitudes i, are arbitrary except that they satisfy

S -

re sp(h

in order to normalize |\P> and that presumably none of them vanishes. I have argued
elsewhere that there is no physical reason why a state such as |‘P> must be normalizable with
respect to the sum over times ¢ because the weight |u,|2 of an Everett branch corresponding to a
particular time is not the probability of anything. However if we were to allow non-
normalizable states we should have to go to the trouble of amending the Hilbert space
formalism to give meaning to representations such as (8) when the sum in (9) is divergent.
That is not worth doing for our present purposes because we shall not encounter any problem
in normalizing |‘P>

To say that Sp(i‘) should physically approximate the real line is to say that there should be many
eigenvalues ¢ of T in any interval over which quantities of interest vary significantly as
functions of ¢. Therefore the sums over ¢ in (8) and (9) should be replaceable by integrals.

We shall take

R

1
by = [2_“)*6-01:2 (10)

where o is very small and positive so that y, varies very slowly over the interval of interest
(O<t<T) but nevertheless falls rapidly to zero as 1 — teo. Any function with those properties
would serve equally well in what follows.

Let P be the system-S3 projection operator

T
P= S~ [ a1
tesph O
0<sisT

for the time to lie between 0 and 7, i.e. for the period of the measurement. Consider the
Hamiltonian

H = A®P + 1®h (12)

for the universe (S;9S,)®s;. Like |‘P> this has no dependence on any time parameter — yet
if we use the term “evolve” to mean “change to successive eigenvalues of T”, we can say the
following about the dynamics of a universe governed by the Hamiltonian H:
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System Sg evolves independently under the Hamiltonian h. Systems S; and S, evolve
under the Hamiltonian H in all branches in which T has values between 0 and T, and do
not evolve at all otherwise.

Now it is easily seen that under the approximations stated above (i.e. sums over ¢ are replaced
by integrals and o is very small), |‘P> is a solution of the Schrdinger equation for a system
with Hamiltonian A — specifically it is an eigenstate of H with eigenvalue zero. From (3),
(8), (11) and (12),

) = - E A f p,%{ [00<0)x, 0)+ 6(0stsTIef, 0y + BTy, )] | } dr

x e SpX)

Because of the properties of p, as t — teo, the boundary term on integration by parts
vanishes, so

A|¥) =i E Ay _[%L[G(K())p, 0y + 8(0st<T)eiflx, 0y + 0(>T))x, X)] | hde.

xe SpX)

Now, taking the kets { [r)} in (14) 1o be orthonormal (remember that the integral over ¢ is
really a sum over the values for which they are orthonormal) and using (7) and the
orthonormality of the eigenstates of X, we have

2
[l = ﬂ%ﬁi\ dt = o > 0, (15)

as stated.

There is one difference between this model and that of Page and Wooters. In their model the
clock and the other subsystem were strictly non-interacting. In this model the “clock”, which
is S3, the “rest of the universe”, does interact with the other two systems (or rather, it acts on
them and they do not react back) and plays a realistic role in the measurement process.

. (13)

(14)
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Twistor regularisation of ultra-violet divergences

In TN 29, and in my TMP review, | suggested that the introduction of
mhomogencotts boundarics ar mliZy into twistor diagrams should have
the potential to eliminate ultra-violet divergences, while retaining a
manifestly finite integral formalism. It's now possible to show this for a
special case of such a divergence, namely the Feynman diagram

ve. Jd“x qu ‘1’, (x) tf’,(‘)(ar“'ﬁ))z ¢3 /3)¢.,./ﬁ)
(V)

in massless cf?theory. To do this 1've gone back to the argument sketched
out in TN 28 . This argument was basically on the right lines, but what |
didn't see then was the essential role of conformal symmeltry breaking in
higher order Feynman diagram calculations - and this is the key factor.

In fact I should have noted that it's obvious that some such symmetry-
breaking musr come in. The regularisation of this divergent integral, as
achieved by conventional QFT methods, is of the form

2/.,3
Los (P'/p")
where p is the total ingoing (and outgoing) momentum and P is some
arbitrary mass. This doesn’t just break conformal invariance: it’s not even

scale invariant. Note that although one may not think of @¢* theory as
geunine physics, the integral being studicd here is essentially the same as

W\NO«ww

in QED, and that the logarithmic factor in 7477 context corresponds to the
|zero-mass limit of the] Lamb shift - very well corroborated by experiment.
So we should consider the logarithm as a genuine physical feature, making
it imperative that some scale-breaking mechanism must be introduced. In
fact it's not hard to write down a twistor diagram which does this and
yields agreement with the logarithmic answer, namely

. g , .
where the boundaries are on 2x=p, WY =] ie they are inhomogeneous
boundarics at infinity, capable of breaking the scale invariance.
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This is very encouraging, as il agrees with the general "skeleton” pattern
postulated for the twistor version of Feynman diagrams. But can this
diagram be dersved - not just written down ad Aoc using knowledge of
the conventional regularised answer?

To analyse the problem, first note that in momentum space the Feynman
integral appears as the dlvergem integral

J lr*

where the integration is to be done according to the Feynman prescription.
By elementary complex analysis, this prescription means that at least
formally it 1s the same as

(aesie) s (ane Sl
(()—flc)z Kk

Here the 5 functions are just on shell propagators, which can be thought
of as sums over a complete set of [ree states; thus we have

o
; +Zj/
3
b13
\i

These sums are divergent, but the tree diagrams themselves are supposed
to be finite, and the next thing 1 to study these tree diagrams in detail.

Much of this analysis has already been done in TN 25, and so I shall here
simply assert that using the information described there, the ¢ ¥ diagram

~J

1s a finite, conformally invariant functional of the fields and can be
represented exactly by the twistor diagram:
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(2)

It's quite another story with the other channel. Let's be specific and use
particular elcmentary states. Without loss of generality we can consider

d.“’x qu Apb‘”ﬂ) _
j (Ge-p) ) (2=9)° (cg,-a,)*f(y")‘ (3)

where p, r are in the past tube and q, s in the future tube. This must yield
a function F(p ,q ,r,s) satisfying

L ¢
22,222 )F(pa.0s 7J 4.x
op op T op 33> ) (()cfrJt)z(u—J)'(l""W)t{"’r)z

(#)
The first difficulty is that the Feynman integral (3) is divergent, a problem
swept under the carpet in the conventional approach where 1/k? is called
"finite” although it's singular at k2 = 0. This means that we are driven first
to find 2 regularisatron for Lhfs lree diagram - a procedure quite unlike the
conventional approach. In doing this we can be guided by the
regularisation of the Maller scatiering divergence. This naturally suggests
the possibility that the divergence encountered here is regularised by the
inhomogeneous twistor integral: z '1,

Calculation shows however that this doesn't satisfy the differential
equation (2). In fact the two sides of the equation fail to match by [a

multiple of] {((t”?)z)z(‘l/’()L(\’"J)L j"!
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t follows that if we put .2 LQQ((F'?/)I)

B R St a—
Flea, 60 = (5 (-1 ) (g7 =1

then this new F satisfies the essential equation (4). Note that a
scale breaking element has entered now. It now turns out that this revised
candidate for the regularised tree amplitude can be put in the form

+ 2
(¢)

where the extra term contains inhomogeneous boundaries at infinity to do
the scale breaking. This looks very promising! It appears that we can now
sum over the states as required, 1.e. replace

N

by

The conformally invariant expressions cancel leaving just the coniribution
from the scale-breaking part. Unfortunately this leads to exactly TWICE the
right answer (and so twice the right Lamb shift.) What's gone wrong? The
trouble is that we haven't shown that (6) is a genuine regularisation of the
divergent Feynman integral in (3); there could be other regularisations
which differ by solutions of the homogeneous equation

(% T %}lf‘sjﬂf"ﬂ”{'”

Indeed (6) is NOT a genuine regularisation. This is demonstrated by the
fact that the interior of the diagram (5) doesn't satisfy the spin-0
eigenstate condition, i.e. that it's an eigenstate with eigenvalue 0 of

(Y. 2)(3 32)

whilst the scale-breaking diagram added on in (6) does satisfy it. This
means that the total functional of fields represented by (6) doesn't project
oul the spin-0 part of the fields meeting at a vertex - as it must Lo be a
genuine regularisation of (3).
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To cut a long story short, there DOES exist another completely finite
functional of the fields which satisfies both (4) and the relevant spin
eigenstate conditions. It can be represented by:

Note that scale-breaking inhomogeneous boundaries at infinity come into
the integral thus introduced. The resulting total functional of fields is still
not uniqucly fixed by thesc conditions, so some further characterisation of
satisfactory regularisation is stilf required. But I will assume that this is in
fact the right answer for the tree diagrams.

Now we can sum over states. The essential idea here is that these divergent
sums are also regularised by twistor diagram inhomogeneily - but this
time we only need a version of the "Mgller” mechanism. For instance we

can evaluate
)ck)
s lLog/t=
o 2 e le

The basic reason for the finite answer is that in integrating out the states,

W DWZ ...
=

m § (w.Z)Z

~ becomes \,,2 sk

Z

so that the 'k’ saves the pole from meeting the boundary. This mechanism
can be applied consistently and this time we get the rugAr answer for the
loop integral, as there is now a partial cancellation between Lhe
scale-breaking terms.

I hope this analysis can be generalised to encompass all divergences
(including vacuum diagrams) systematically, but much more work is

nceded yet.
Ayvh\(m/ mﬂm



Preferred parameters on curves in conformal manifolds

Toby Bailey Michael Eastwood
October 2, 1990

What follows are some observations made while considering whether one can construct
analogues in conformal differential geometry of the ‘pinched curvature, injectivity radii
and minimising geodesics’ ideas that lead (for example) to the Sphere Theorem in Rie-
mannian differential geometry. These considerations are at a very early stage, but have
led indirectly to an interesting (and as far as we know original) result about the distri-
bution of curvature on a closed curve in R".

Let 7 be a curve (i.e. a smoothly immersed 1-dimensional submanifold) in an n-
dimensional conformal Riemannian manifold. Choose a metric in which to work and
parametrise v by an arc-length parameter ¢t and let U® be the unit tangent vector. The
curvature is given by x = \/AbA,, where A* = U°V, Ub.

As observed by Cartan (for an account in this language see the authors’ paper in Proc.
AMS 108 (1990}, 215-221), such a curve has a natural projective structure—i.e. a family
of preferred parameters related by fractional linear transformations under SL(2,R). The
function s on v is a preferred parameter if it obeys the (‘inhomogeneous Schwarzian’)
equation

(‘I)—-l‘”l _ %(‘l)—z('n)z - %Kz +P
where ‘dash’ denotes differentiation with respect to t and P = P,,U%U® where P,; is the
usual trace-modified multiple of the Ricci tensor. The simplified form of the equation
when compared with the above reference is due to our use of an arc-length parameter.

In order to study the behaviour of these parameters we substitute £ = s(s')~1/2 since
a brief calculation shows that these {-parameters obey the linear equation

'+ (3P +jPX=0.

We define the indez of a curve from A to B to be the number of zeroes (excluding the
initial one) that the {-parameter with {(4) = 0,£'(A) = 1 has before reaching B. The
location of, (and hence the number of) such zeroes is conformally invariant. As a first
step towards investigating the properties of this index we have considered its behaviour
on closed curves in R". If ¥ is a (geometric) circle, it is easy to check that the first zero of
any {-parameter occurs exactly at the starting point after one full traverse of the curve.
As we see below, this characterises the circles among all closed curves.

We begin with a result (perhaps of interest in its own right) about the distribution of
curvature on a closed curve.
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Proposition Let 7 be a closed curve in R™ of length |, parametrised by arc-length t.
Let k be the curvature of y. Then

{ 2
/ 2 sin? (Lt)d> 2x%
0 1 -

with equality if and only if ¥ is a circle.

The proposition is proved by expanding the coordinates as functions of ¢ in Fourier series
and performing some essentially trivial manipulations.

Proposition Lety be a closed 1-dimensional submanifold of R™ which is not a geomet-
rical circle. Then any closed curve which consists of traversing v once from some chosen
starting point has indez at least 1.

Proof Let v be of length | and consider the eigenvalue problem

d2
(@—w)e X, E(0) =€) =0

on the interval [0,1]. Then the {-parameter with £(0) = 0,¢'(0) = 1 will have a zero
before t = [ if and only if zero is greater than the least eigenvalue of this problem. Since
the operator on the left-hand side is bounded below we know that the least eigenvalue is

always less than
/¢()( @—-x)w)dt

for any function the integral of whose square over [0,1] is unity.
Taking ¢(t) = \/2/Isin?(xt/l) we see that a sufficient condition is that

{
/ x?sin?(xt/)dt > —— 2’
0

The result then follows from Proposition 1. a|

It is unclear at this stage whether these ideas (together perhaps with a study of the
‘exponential map’ for conformal circles) will lead to any interesting results on conformal
manifolds. It would be interesting to know (for example) whether conformal circles are
in any sense index-minimising curves. As a starting point however one can (easily) prove
results such as:

Proposition If M is a compact Riemannian conformal manifold such that there is a
metric in the conformal class with pinched sectional curvatures

2(n—-1)

— < <
in-Dp g s H ST

and k > 1 is an inleger, then any two points can be joined by a curve of indez less than
k.

The authors thank John Baez for assistance with the proof of the second proposition.

; d
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Families of invariants

There are many well known examples of linear conformally invariant dif-
ferential operators: For a flat four dimensional conformal geometry the
Laplacian A := V*V, is invariant when acting on densities of weight —1.
If f is a density of weight 1 then

V(avb)of (1)

(where ()o denotes the trace-free symmetric part) is invariant.
One can also construct non-linear invariants. For example, in four di-
mensions, if again f has weight 1 then

FAf —2VefV.f (2)

is invariant. It is interesting to note that this latter invariant is closely
related to the Laplacian invariant via the identity

—fAf = fAf - 2VfV.f.

Indeed we can use this to deduce the invariance of (2) from the invariance
of the Laplacian smcc f7! has weighti —1. More generally if f has weight

w then fH1WA f' v is clearly invariant. Expanding this out we obtain a
family of invariants parametrised by weight w:

wfAf — (w+1)VfV,.f.

The Laplacian, or at least fAf, is seen to be just a special case of this
family. By similar reasoning the invariant (1) is found to be a special case
(if we ignore overall left multiplication by f) in the family

wfv(avb)of - (w - 1)V(afvb)of'

Indeed given any invariant on (non-zero weight) densities, which is poly-
nomial in jets of the density, one can use this technique to generate the
family to which it belongs. In other words provided we avoid invariants of
the functions® then all invariants on densities of any given weight can be

'In fact the reader will observe that putting w = 0 in the above formulae does yield an

invariant. However at this stage it is not known how many invariants of functions do not
arise in this fashion. V,f* is one example.
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obtained in this manner from the set of all invariants on any other given
weight.

For invariants of densities this procedure and these results also work in
other dimensions and for other structures (for example projective geome-
tries) and also for the corresponding curved cases. On the other hand it is
difficult to imagine that this scheme for producing the families of invariants
can be generalised to deal with quantities other than densities (i.e. weighted
tensors and spinors). However, at least in the flat case, these families can
be generated in other ways [1] that work equally well for tensors. It is likely
that similar results hold for this more general case — i.e. that all invariants
occur in families. If this is true then the problem of producing a complete
theory of invariants is considerably reduced.
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Quaternionic complexes.

R. J. Baston
Mathematical Institute
24-29 St. Giles
Oxford
0OX1 3LB
U.K.

August 29, 1990

Abstract
IJach regular or sewni-regular integral afline orbit of the Weyl group
of gl(2n + 2,C) invariantly determines a locally exact differential com-
plex on a dn dimensional quaternionic manifold.
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Almost Hermitian Symmetric Manifold

s I
Local Twistor Theory

R. J. Baston
Mathematical Institute
St. Giles
Oxford
OX1 3LB
U.K.

February 14, 1990

Abstract

Conformal and projective structures are examples of structures on
a manifold which are modelled on the structure groups of Hermitian
syminetric spaces. We show that each such structure has associated
a distinguished vector bundle (or local twistor bundle) equipped with
a connection (local tunstor transport). For projective and conformal
manifolds, this is Cartan’s connection. The curvature of the connection
provides an tensor invariant which vanishes if and only if the manifold

is locally isomorphic to a Hermitian symmetric space.

0o

/Ma{[, J fa q’ﬁlpec(p:
Almost Hermitian Symmetric Manifolds II

Differential Invariants

R. J. Baston
Mathematical Institute
Oxford
OX1 3LB
U.K.

July 31, 1990

Abstract

We use local twistor connections and Lie algebra cohomology to
construct linear differential operators depending invariantly on almost
Hermitian symmetric structures. All standard homogeneous (flat) op-
erators admit curved analogues whilst most nonstandard ones appear
obstructed; these obstructions yield further invariants of the AHS
structure. The methods of the paper, applied in the flat case to ir-
reducible quotients of Verma modules, construct nonstandard homeo-
morphistas of Verma modules given (relative) Kazhdan-Lustzig poly-
nomials.
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Zuckerman functors, the Penrose transform
and homomorphisms of Verma modules.

R. J. Baston
Mathematical Institute
24-29 St. Giles
Oxford
OX1 3LB
UK. *

July 13, 1990
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A multiplicity one theorem for
Zuckerman’s functors

R. J. Baston
Mathematical Institute
24-29 St. Giles
Oxford
OX1 3LB
U.K.

November 1, 1990

Abstract

Let g be a complex semisimple Lie algebra and p,r standard
parabolic subalgebras with k a reductive Levi factor of p. We prove, via
the Penrose transform and results of Enright-Shelton on semi-regular
categories, that irreducibles occur with multiplicity at most one in the
cohomologically induced modules @;[', N. Here N is a (dual) Verma
module induced from r, and p, r are of a restricted class which includes
all Hermitian symmetric cases. This, with Vogan’s U, calculus, gives
an effective method for computing the irreducible subquotients of the
LN,

The methods used generalize to a geometric setting, in which T} ¥
is replaced by holomorphic sheafl cohomology over an open subvariety
of G/R and may be viewed as an extension of the Bott-Borel-Weil
theorem to such domains.



A multiplicity one theorem for
the Penrose transform

In the last I'N, [ outlined a method lor computing the cohomology of cer-
tain sheaves on homogencous twistor spaces 7 lor general complex semisimple
Lie groups. | used the fact that (a) the sheaves in question are related to each
othier by certain explicit short exact sequences and (b) there is a basic sheaf
(obtained by helicity raising [rom the canonical bundle) whose cohomology is
simple to compute'. The only tricky point is to understand the maps in the
resulting long exact sequences ou cohomology. It turns out that there is an el-
egant inductive procedure for doing this in a good nurnber of cases, including
all of physical interest. The result may he viewed as an elegant extension of
the Bott-Borel- Weil theorem to open homogencous spaces. It also removes
spectral sequences in the Penrose transform from recipes to their proofs.
Suppose we have a short sequence

0> A DB—-0->0

obtained by helicity lowering and raising as in the last TN. Suppose we know
HY(Z,A)and so H'(Z, B). To obtained H'(Z, (") from the long exact sequence

Cm N2, A S W2 B) = 1 Z,C) — -

we need to know a. These cohomology groups bear extra structure because
Z C (/R s a subset of a complex homogencous space and A, B, C are ho-
mogencous (see [2] for terminology etc.). They are all modules over the Lie
algebra g of (7—in the usual four dimensional twistor picture, G = SL(4, C)
covers the complex conformal group. We can therelore try to decompose
H'(Z, A) etc. into g irreducibles. 1T g were the real Lie algebra of a compact
Lie group the result wonld be a direct s of finite dimensional vector spaces,
each an irveducible representation of g. Since g is complex, however, the best
we can do is to write (7, A) as a tower of submodules whose successive
quotients arc direct sums ol (not necessarily finite dimensional) hrreducible
representations. We get a picture ol [/(Z, A) as a building with each storey
a home for a direct. sum ol irreducibles. Thus we might have

. L-l ) /15
(2, Ay = Ty 0,
Ly

with Ly a submodule. By requiring thal A is irreducible, we can ensure that
the L; come from a known lnite list of possibilities. ‘I'he scheme is to figure
out what o docs to cach ;. The ideal answer is the lollowing

1 -- - o - . ) ) R . e
Sinmular ideas were suggested by Lionel AMlason ioan earlior TN,
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Proposition [f L; occurs in (7, A) and wn H'(Z,B) then « is an iso-
morphism bolhween them.

A much stronger result is in fact true. Recall that 7 corresponds to a Stein
open subsct X C (/P ol a second homogencous space. Suppose (G, P) and
(G, Q) are both Hermitian symmetric pairs (Lhis includes all cases of physical
interest--—sce [20 chap 10]) and A is now any irreducible homogeneous sheaf
on Z. Then

Theorem An irreducible g module I occurs in al most one degree in any
HYZ, A) and then only once. There is an alyorithm for determining when it
oceurs.

This certainly imiplies the proposition. for if «v is zero on an L occuring in
both H'(Z, Ay and M (Z.B) then Looceurs in 11714, CY and H(Z,C). The
algorithm follows [rom the long sequences,

The idea behind the proofl is quite shmple, There are certain special homo-
geneous bundles D called singular on G/ 17, distinguished by H(G/R,D) =0
for all ©. O(=3),0(=2),0(—1) arc all examples for ordinary twistor space
in CP”. Indeed, any non singular bundle A can be sent to such a bundle by
helicity lowering. The short exact sequences above are obtained by first doing
this lowering and then raising back to the original helicity. Taking cohomol-
ogy commutes with this helicity lowering. I L had multiplicity more than
one in H'(Z, A), we could arrange to helicity lower A to a singular bundle D
so that the helicity lowered Lis not zero and still has multiplicity more than
one in [I(Z. D). This means that proving the theorem reduces to proving it
for such singular hundles,

A great deal 1s known about singular bundles in the Hermitian symmetric
selting. 1t turns out [3] that they behave very minch like non singular bundles
for groups G/, ', R of the same kind as G, I, B butl smaller dimension! The
proof of the theorem now reduces checking that this behaviour extends to the
Penrose transform, for that provides an inductive step on the rank (dimension)
of G. Some rather beautiful subtleties emerge whilst doing this to explain how
cohomology degrees are related hetween the pictures for G7 and G. Details
to come in [1].

Thanks to Brad Shelton Tor explaining the philosophy behind [3] and Jim
Isenberg for hospitality in Fngene, ORLU T won™ forget the mountain bike ride

guys! %b %a@@\/
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A SPINOR FORMULATION FOR HARMONIC MORPHISMS
by
Paul Baird(*) and John C. Wood

0. Introduction

The aim of this paper is to draw attention to the simple description of harmonic
morphisms in terms of spinors, and to interpret the equations in terms of holomorphicity properties
of sections of twistor bundles.

Harmonic morphisms have been studied by mathematicians for some time. They are
defined as mappings between Riemannian manifolds which pull back germs of harmonic functions
to germs of harmonic functions. Equivalently they are the harmonic mappings which are
horizontally conformal (see [B1, B3, BW1] for details and further references). Thusif ¢ : M —
C is a mapping from a Riemannian manifold M (dim M 2 2) with values in the complex plane
C, then ¢ isa harmonic morphism if and only if

w 90 9
0.1) g
ox odx
by O 3
(0.2) A = g"( a¢b - ib%)=0 ,
ox ox Jx

where g = g2 is the metricon M and the I''s are the corresponding Christoffel symbols. The
first equation expressing horizontal conformality, the second harmonicity. In this note we
concentrate on the case when M < R* is an open subset of Euclidean 4-space. At the end we
indicate the Euclidean R3 case and the Minkowski M* case.

To a harmonic morphism ¢ : M — C, M < R%, we associate a pair of spinor fields
(€A, ™) defined on M . These satisfy the spinor equations
VAA‘{;AT]BI =0
(1.7
VAB.E,CnB' =0.
We interpret the projectivised fields [E2], [ in terms of Gauss sections. The pair ([EA], [nA])
then determines a section of the well known twistor bundle Z* xZ- over M (see [ES]). This ties
in with the description of the second author [W] for submersive harmonic morphisms from a
Riemannian 4-manifold to a surface. The equations (1.7) are then equivalent to holomorphicity
equations for that section. It is worth pointing out that the spinor formulation in this note does not
require the restriction that ¢ be submersive. This was necessary in [W] to guarantee a
decomposition of the tangent space into well-defined vertical and horizontal spaces at each point.
Thus we generalize here to arbirary harmonic morphisms.
As an additional comment we note thut a submersive harmonic morphism from a
Riemannian m-dimensional manifold M to a surface is locally equivalent to an (m-2)-dimensional
conformal foliation of M by minimal submanifolds. In the case when m =3, we can remove the

(*) Supported by an S.E.R.C. Advanced Fellowship.
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restriction 'submersive’ and the foliation is by geodesics. Such conformal foliations are the
Riemannian analogue of the well known shear-free null geodesic congruences, much studied by
relativists in connection with zero rest mass fields (see [BW2, 3] for details).

In [BW1,2] all harmonic morphisms from a three-dimensional simply connected space
form to a surface were determined. In these cases the harmonic morphisms are determined by
pairs of holomorphic functions, see also Tod [T1, 2].

Throughout we use spinors as descnibed in the Appendix of [PR, vol 2]. This enables
us to consider spinors defined on a vector space with metric of arbitrary signature.

1. Harmonic morphisms from R4 in terms of spinors

We consider R4 with its standard Euclidean metric. Vectors x2 may be expressed in
terms of spinors by the correspondence:

ix0+x!  x2+ix3
(XO: xl’ x2, X3) &> '_I' = XAA'.

2\ x2-i3  ix0-x!
Writing d, = d/0x? , the spinor covariant derivatives V AA' 4re given by
V. =-1(id, +d,)
00 0" Y
2
2
Vi = _J‘: @,+i9,)
2
V. =21 (-id.-9)
11 Iz 0”9/ -

Now let M c R4 be an open subset, and recall that ¢ : M — C is horizontally
conformal if and only if

L S(2) .0,
a ax

and ¢ is harmonic if and only if
2
d
(1.2) 2 ?2 =0.
a (ax )
So ¢ is a harmonic morphism if and only if (1.1) and (1.2) are satisfied. Let $: M — C bea

smooth mapping. From equation (1.1) we immediately deduce that ¢ is horizontally conformal if
and only if

(13) Vaad = Eally

for some spinor fields £,, N4 definedon M.

Remarks 1) We always have the freedom (§4, 15 — (AEp, (1/AN ), A e C.
2) Atacritical pointof ¢,V .0 =0 andoneof &, is zero.

3) Equauon (1.1) is the condition that the gradient be a complex null vector field. That is
V6.Vé = 0.
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Since (1.2) 1s equivalent to VAA'VAA-Q) =0, we have that, if ¢ is horizontally

conformal, so that V20 =E&n 4 for spinors Ea» N » then ¢ is harmonic if and only if
(1.4) VARE Ma = 0.

Conversely, given a pair of spinor fields 4,7, on M, we would like conditions
which ensure they determine a harmonic morphism. Now the product E AT o determines a null
vector field v, . We require V (,vp) 10 be zero. This is computed to be equivalent to the six
spinor equations: :
(1) V]]'é]nll - Voo'éono'
(i1) V()]'éonll - V]()'élno'
(i) Vpp&®n! =
(1.5) (iv) VpEhnY

() Vogtn® =
vi) Vig€hn®

Combining (1.4) and (1.5) we obtain

Il
()

it

0
0
0
0

(1.6) Theorem There is a correspondence berween (i) harmonic morphisms ¢ :M — C,

| M c R4, and (ii) pairs of spinor fields (X;A, nA') on M satisfying the spinor equations:
Vaagtm® =0

(1.7)
VAB.E,CnB' =0.

Proof Itis clear that (1.7) implies equations (1.4) and (1.5). Conversely, suppose we consider

the first of equations (1.7) with A'=B'=0. Then

Vootn® + V1m0 = (Vo&® + v & + v €Y + Vo, 0172 by (1.5) (i) and (i)

=0 by (1.4).
The other equations are proved similarly.

Remark In terms of the geometric description of [PR]. Ateach point x € M where V4,00,
EA(x) determines an a-plane a(x) on the quadric Qp c CP3, and M«(x) determines a B-plane
B(x). Then o(x), B(x) intersect in a point of Q. This point corresponds (under the
identification of Q, with the Grassmannian of oriented 2-planes in R%) to a real 2-plane through

the origin in R4. This plane is the vertical space at x (the tangent to the fibre of ¢ through x),
rranslated to the ongin.

2. Examples

Particular examples of hirmonic morphisms ¢ : R — C are given by maps which are
holomorphic with respect 1o one of the Kiihler structures on R, Euch Kiihler structure arises
from the standard one obtained by identifying R* = € x C , and composing with an isometry.

Use coordinates (z, w) for Cx C,sothat z=xY+ix!, w=x2+ix3 Then
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$: M — C, M < R4, is holomorphic if and only if
¢ _ 9 _

2z ow
if and only if
Vogd = Vg = 0.
Then clearly det V5,4 = 0 and 3
0 * *»\(0 %)

Vaad = =
0 * *

sothat g = (0 A), forsome A e C. Similarly ¢ is -holomorphic if and only if 1g. = (1 0)
for some e C. We now consider the effect of an isometry on the spinor decomposition of
Vaad-
There is a well known double cover SU(2) x SU(2) — SO(4). Suppose that 8 €

SO(4) and define 76= ®o0. Then Vi(x) = VOO(x)00. If (A, B)e SUR) x SUQ)
covers 0, then the induced action on spinors is given by

Eala = AGaNaB*,
where B* =BT so that

(Eq-MaY = (AL, My B*)
(.e. EA(O(X)) = A(éA(x)) and ?]JA,(B(X)) = (nA-(x))B*). Note that under the equivalence
Ear NA) ~ (AE 4, Ma/A), this is independant of the choice of (A, B) covering 6 . In particular
we see that ¢ : M — C is holomorphic with respect to a Kahler structure obtained from the
standard one by an orientation preserving isometry if and only if [n,] € CP! is constant.
Similarly ¢ is *holomorphic with respect ta a Kihler structure obtained by an orientation
reversing isometry if and only if [§,] € CP! is constant. To summarize.

(2.1) Theorem If ¢:M — C, M < R* open, is a harmonic morphism, then ¢ is
+holomorphic with respect to one of the Kdhler structures on R4 if and only if either [N,] or

[EAl is constant.

Another class of examples are those which have torally geodesic fibres. These are
classified in [BW1]. If ¢ : M — C, M open in R4, is a harmonic morphism with totally geodesic
fibres, let N denote the leaf space of the fibres. Locally and in favourable circumstances globally,
N can be given the structure of a smooth Riemann surface and ¢ is given implicitly by the
equation

o(O0XO + 0 (DEOIXT + 0@ + a3 (o(x)x3 = 1,
where x = (x9, x!, x2, x3), a = (1/2h)(1 - £2- g2,i(1 + 2 + g2), -2f,-2g) and f, g, h: N -
Cleo are meromorphic functions. In this case it is easily checked that §, ,m . are given by

) 1 f-i
Ca = ‘—/———1\/5(&“) A ( ig)
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1

N, = ——
§ JJZ@xh

(here f, g and h are evaluated at m(x), where = is projection onto N).
Note that in general neither of these are projectively constant and so the harmonic

-if+g 1)

morphisms are not tholomorphic. It is not known whether (1.7) has any solutions globally

defined on R? apart from those with [§ Al or [Na] constant, such solutions would define new
harmonic morphisms from R4 to C.

3. Interpretation in terms of twistor bundles

Here we relate our spinor description to the description given by the second author [W]
in terms of twistor bundles, thus interpreting the equations (1.7) in terms of holomorphicity
properties of Gauss sections. We briefly summarize the results of [W].

Let V be a 2-dimensional distribution in an oriented 4-dimensional Riemannian
manifold M, and let H be the corresponding orthogonal 2-dimensional distribution. We may
locally choose orientations for each V,, H,, x € M, so that the combined orientation of V, & H,
=T,M is that of M. We then define almost complex structures JV, JH on each V,, H, tobe
rotation through 7/2. Note that changing the orientation of V, changes that of H, and replaces
(JV, JH)y by (-JV,-JH) . All results below will be independant of this change, so that there is no
loss of generality in assuming JV, JH are globally chosen.

The Gauss section of V,7y: M — G,(TM) then maps into the Grassmannian of oriented
2-planes in TM. The almost complex structures JV and JH combine to give almost complex
structures J! = (JV, JH) and 32 = (-JV, JH) oneach T,M. Note that J1 is compatible with the
orientation, i.e. there exists an oriented basis of the form ey, Jley, €9, Jle,, whereas J2is
incompatible. Let Z* (resp. Z-) be the fibre bundle over M whose fibre at x is all metric almost
complex structures on T,M which are compatible (resp. incompatible) with the orientation; these
are the well-known twistor bundles of M [ES]. The distribution V defines section yl ‘Mo Zt
and ¥2: M — Z" by y(x) = J1, ¥%(x) = J2 (where J1, J2 both acton T,M). Note thatif M is
an open subset of Euclidean space R4, the twistor bundles are trivial Z£ =M x S2 and there is a
well-known holomorphic bijection Go(R%) = §2 x S2,

Given a submersive harmonic morphism M4 — surface, the tangent spaces to its fibres
give an integrable, minimal and conformal diswribution.

(3.1) Theorem [W] Let V be a 2-dimensional distribution on a 4-dimensional Riemannian
manifold M. Then V is integrable, minimal and conformal if and only if the section v': M —
Z* is holomorphic with respect to the almost complex structure 12 on M and the section yz M
— Z° is -holomorphic with respect to the almost complex structure J' on M.

Now let ¢ : M — C be a submersive harmonic morphism from an open subset M of
R4. Then the tangent planes to the fibres determine a 2-dimensional distribution V on M. At
each point x, V, is given by
(030, -020, 019, -0l € Q, < CP3,
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where Q, = G(R%) is the standard identification of the Grassmannian with the complex quadric.
Then a direct computation verifies that v = Ml and 72 = [E,A] in terms of the spinor
decomposition V40 =EaN 4~
Write W = V¢, then
W0+ Wi W24 iw3 N (ol
|
Wa L34 \)':2: | =
w2-iw3d  iwl. wi gl
and at each point xe M,
W] = [HEMT+ &MY, & - gt &l + 0, i - £ 1)) e CP3.
But the standard identification CP! x CP! — Q, < CP? is given by
(8% 1, % ') — [EN + &M, e - g, g0 + EinD, i€ I - g1y
Thus, identifying CP! with Cuee by stereographic projection [E0, E1] — E/E! etc., we find
powReiw? iwtew o wWEiw? il e W
3.2) v 0 T 2 70 1= 0 1T 2 '
w’ow o wiiw Wt oW wheiw?
Writing the spinor equations (1.7) in terms of W | they take the form
() (-idg + WO + W) + (9, +193)(W2-iW3) = 0
(i) (-idy + O (W2 +iW3) + (3, +103)(W0 - W1y =
(i) (95 - i03)(AWO + W) + (-idg - 9))(W2 - iW3)
({v) (9 - i03)(W2 +1W3) + (-idg- 9(IWO - W1)

o OO

3.3

) (v) (-idg + IDEWO + W) + (3, - id3)(WZ +iW3)
(vi) (-idy + (W2 -iW3) + (95 - id3)(iW0 - W)
(vii) (9 +193) (WO + W) + (-idg- 9 (W2 +iW3) =
(viii) (97 +i093) (W2 - iW3) + (-idy- oDAWO - Wl =

|
oo OO

Remark Of course these are equivalentto V,W2=0 and V [;Wy; =0, expressing harmonicity

and integrability respectively.

In order to show that equations (3.3) imply the holomorphicity results of Theorem (3.1),
we consider a point x and suppose without loss of generality that d,,dy span V, . then
W2 +iW3 = W2.iW3 = 0 at x. Since the fibres of ¢ are minimal [BE], we also have
W2 +93W3 =0 at x. In particular at x

(37 - 103)(W2 +iW3) = (d) +i}(W2-iW3) = 0
by minimality and integrability of the fibres.
Consider y! = (W2 + iw3)/(iW0 - W1) . Then at x
(-idy - 9 )WY -wh =0
by (3.3)(vii1). By horizontal conformality
(WO + iWhHWO - iwly = (W2 + iw3)(W2 - iw3) .
Soat x,either WO+ iw! =0 or WO-iW!=0. Suppose WO-iW!l =0, in which case
WO +iWl 0. Then

(WO iW1H(0y + id) (WO +iWhH + (WO 5 iWDH(d, + i03)(WO - iwhy = 0

at x, so that
(0r + i)W+ W = 0
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at x . Now (3.3)(vii) implies
(-idy - OD(W2 +iW3) = 0,
so that
(-idg- 0y = 0
and y! is horizontally -holomorphic.

Writing ¥ = (W0 + W1/(W2 - iW3) , a similar computation shows that (d, +id3)y! =
0 and y! is vertically holomorphic. Similarly P is horizomally -holomorphic and vertically
-holomorphic. If on the other hand WO +iW1 =0, then the holomorphicity conditions are
reversed.. We have therefore shown directly that the spinor equations (1.7) give the equations of
Theorem (3.1).

Conversely given a 2-dimensional distribution which is conformal, then it determines a
null vector field which can be described by spinor fields &4, T, . If the corresponding Gauss
maps satisfy the holomorphicity equations of Theorem (3.1), then by that theorem the distribution
is integrable and minimal and the spinor fields &4, 1 5. satisfy equations (1.7).

This gives an interpretation for the spinor fields and equations of Theorem (1.6). The

advantage of Theorem (1.6) over Theorem (3.1) 1s that it is valid for arbitrary harmonic morphisms
(i.e. those with critical points). "

4. Minkowski space

We consider amap ¢ : U — C, U open in Minkowski space M4, satisfying the
equations:

@.1) (©o®)? - (010)% - (00)? - (33¢)? = 0
(4.2) 929 - 9120 - 920 - d32¢ = 0.
The spinor correspondence is given by
X0+ xl xZ+ix3
x4 “ xaa = L

7\ x2-ix3 x0 - x1
Exactly as for the R4 case we obiain

(4.3) Theorem There is a correspondence berween

(1) mappings ¢ YU — C sauisfying equations (4.1) and (42) and

(ii) pairs of spinor fields (E8, ™) on U satisfying the spinor equations:
Vaain® =0
VAB'éCnB. = O.

5. The Euclidean R3 case

We define the spinor correspondence by
x2+ix3  xl
xd = (x] x2, x3) & - ~ xAB
N 1 24 ix3
-X -X< + 11X
Define the differential operators Dap by
Doy = (09 - 1072
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Doy = -31/\2
Dy = -9)\2
Dy; = (-9 - i0V2.

These agree with [S], equation (14). Let M C R3 be an open subset and suppose ¢ : M — C is
a smooth mapping. Then, as for the R* case, béing horizontally conformal is equivalent 1o
nullity of Dagd which 1s equivalent 1o

5.1 Dapd = E458

for some spinor field £, on M.

If ¢ is horizontally conformal, so that Dapd = E,&p, then ¢ is harmonic if and only
if
(5.2) DARERER = 0
(if and only if EBDAREA = 0).

Conversely, as in [S], given a spacial null vector field v = pApB, then curl v is given
by -iV2DC(AL B . Combining this with equation (5.2) we obtain

(5.3) Theorem There is a correspondence berween harmonic morphisms ¢ :M - C, M
openin R3,and spinor fields £E5 on M saisfying
(5.4) DAgEAEC = 0.

Note: A spinor field yAB = EAEB satisfying (5..4) may be interpreted as a null, source free,
time independant solution to Maxwell's equations. This is in fact clear by expressing Vo =E +iB
in real and imaginary parts. Then horizontal conformality implies EB=0,curl E=curl B=0 is

automatic and harmonicity gives divE=divB=0.

Given a harmonic morphism ¢ : M — C, M openin R3, we can associate a Gauss
map Y:M — S2, given by y(x) = unit positive tangent to the fibre of ¢ through x (see [B2,
BW11). Infact y extends smoothly across critical points [BW3]. Then itis easily checked that in
the chart given by stereographic projection $2 — Cleo, ¥ is represented by £y/&;. The equation
(5.4) now has the simple interpretation of (1) minimality of the fibres, and (ii) horizontal
holomorphicity of the Gauss map y[B2, W].

Harmonic morphisms from open subsets of Euclidean space R3 have been completely
classified in [BW1]. Infactlocally ¢ is given implicitly by an equation

o QOOXT + 0,@NX2 + oGO3 = 1,
where o = (1/2h)(1 - g2, (1 + gQ), -2g) and h, g are meromorphic functions on a certain

Riemann surface N (the leaf space of the corresponding folitation). In this case the corresponding
spinor field is seen to be

(5.5) - L (= &),

: éA V ﬁa'.x ( \/F \/F

where g and h are functions of m(x) where 7w is projection onto the leaf space N . By aresult
in [BW1], the only harmonic morphisms defined globally on R3 with values in a Riemann
surface are given by an orthogonal projection followed by a weuakly conformal map. In this case
after appropriate choices of coordinates, N =C, g 1sconstant and h(z) =z . In particular this is



true if and only if [E4] is constant.

Remark There is an interesting connection between harmonic morphisms ¢ : M — C ;M open
in R3, and solutions to the Bogomolny equations (magnetic monopoles). For both are classified
in terms of holomorphic curves in the compex surface TS2 [BW1, H]. For examples such as the
axially symmetric solutions of Prasad and Rosst, the region of physical interest appears to be the
envelope of the fibres of the harmonic morphism. These are precisely the points x where

o'.x =0 [B2, BW1] and so correspond to the singularites of the spinor field given by (5.5).
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Invariants of Conformal Densities

Michael G. Eastwood C. Robin Graham

Abstract

This article is concerned with problems in parabolic invariant the-
ory arising from flat conformal geometry. We show that such problems
may be formulated in terms of the variational complex, taken from the
formal theory of the calculus of variations. From known properties of
this complex we are able to write down the general scalar differential
invariant of functions in odd dimensions under conformal motions.
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