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Recall that a Riemannian manifold (M, g) of dimension 4k, k > 2, is said
to be gquaternionic-Kahler if its holonomy group is a subgroup of
[Sp(k) x Sp(1)]/Z;. Such manifolds are interesting, not only because they
are automatically Einstein and occur in the holonomy classification of Rie-
mannian geometries, but also because they have twistor spaces analogous to
those familiar from dimension 4. Indeed, in the special case of k = 1, we
define (M, g) to be gquaternionic-Kahler iff it is self-dual Einstein.

The only known examples of compact quaternionic-Kahler manifolds of
scalar curvature R # 0 are symmetric spaces, and indeed there are theorems
[2, 4] asserting that a compact quaternionic-Kahler manifold of dimension 4
or 8 with R > 0 must be symmetric. While it remains unclear whether or
not such a result might hold in higher dimensions, I would like to point out
that, in this direction, one can at least say the following:

Theorem 1 Let (M, g) be a compact quaternionic-Kdahler 4k-manifold with
R > 0. Then either

(a) b2(M) = 0; or else

(b) M is the symmetric space G3(C*+?) = SU(k + 2)/S(U(k) x U(2)).

With a little bit of twistor theory, this is in fact an immediate consequence
of some recent advances in algebraic geometry stemming from Mori’s theory
of extremal rays [3]. Let us begin by recalling that a compact quaternionic-
Kahler 4k-manifold with R > 0 has as its twistor space a compact complex
(2k + 1)-manifold Z which admits a complex contact form and a Kahler-
Einstein metric with positive scalar curvature. In particular, ¢; > 0, so that
Z is a so-called Fano manifold, and c, is divisible by k + 1. We can therefore
invoke the following result of Wiéniewski [6):
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Theorem 2 (Wisniewski). Let X be a Fano manifold of dimension
2r — 1 for which ric;. Then by(X) = 1 unless X is one of the following:
(s) CP,_y x Q, ; (i) P(T*CP,) ; or (is) CPy,_, blown up along CP,_,.

Here Q, C CP,,, denotes the r-quadric— that is, r-dimensional compact-
ified complexified Minkowski space— while the projectivization of a bundle
E — Y is defined by P(E) :=(E - 0y)/(C - 0).

On the other hand, spaces (i) and (iii) aren’t complex contact manifolds,
as follows most easily seen from the fact that that I'(CP,_,,1!(1)) = 0, so0
that the obvious foliations by CP,_;’s would necessarily have Legendrian
leaves, so that these spaces would then have to be of the form P(T*Y),
where Y is the leaf space Q, or CP,; contradiction. So the only candidate
for a twistor space is (i), which is indeed the twistor space of G,(C**?).
Theorem 1 now follows from the Leray-Hirsch theorem on sphere bundles:
b:(2) = ba(M) + 1.

In dimension 4, Theorem 1 contains Hitchin's result [2], since a compact
self-dual manifold with b; = 0 must be conformally flat. On the other hand,
there are already two symmetric examples with b, = 0 dimension 8, so the
Poon-Salamon result [4] really contains further information about this case.

Is there a more elementary proof of Theorem 17 Haiwen Chen (private
communication) has given a Weitzenbock argument for a weaker version of
this theorem, but his proof unfortunately requires the hypothesis of positive
sectional curvature.

Acknowledgements. The author would like to thank Shigeru Mukai
and Janoé Kolldr for their helpful explanations of the theory of Fano mani-
folds. ‘

References

[1] T.N. Baily and M.G. Eastwood, Complez Paraconformal Manifolds—
Thesr Differential Geometry and Twistor Theory, Forum Math., to ap-
pear.

[2] N.J. Hitchin, Kdhlerian Twistor Spaces, Proc. Lond. Math. Soc. 43
(1981) 133-150.

[3] S. Mori, Cones of Curves and Fano Manifolds, Proc. Int'l. Congr. Math.
1983.

[4] Y.-S. Poon and S.M. Salamon, Eight-Dimensional Quaternionic-Kahler
Manifolds with Positive Scalar Curvature, J. Diff. Geometry , to appear.

[5] S.M. Salamon, Quaternionic-Kdhler Manifolds, Inv. Math. 67 (1982)
143-171.

[6] J.A. Widniewski, On Fano Manifolds of Large Indez, preprint, Warsaw
University, 1990.



