References

Univ. of Ill. at Chicago
Chicago, Ill. 60680

L. Mason: A new programme for light cone cuts and Yang-Mills holonomies

Appendix: explicit coordinate expressions

One of the main features of the Kozameh-Newman formalism is the use of the 4 functions $Z^{AA'} = \partial^A \partial^{A'} Z$ at some fixed π^A, π_A as coordinates on \mathcal{M}. The 0th and 1st derivatives of Z are determined from $Z^{AA'}$ by $Z = \pi_A \pi_A Z^{AA'}$ and $Z^{A'} = \pi_A Z^{AA'}$ (these follow from the homogeneity of Z) so $Z^{AA'}$ is the part of the second jet of Z as a function of π_A, π_A containing only the mixed second derivatives. In flat space Z can be taken to be $Z = x^{AA'} \pi_A \pi_A$ where $x^{AA'}$ are affine coordinates on Minkowski space, so $Z^{AA'} = x^{AA'}$.

Note that if a quantity f has homogeneity n in π_A, then $\pi_A \partial^A \partial^{A'} \partial^n f = 0$ by homogeneity so that $\partial^A \partial^{A'} \partial^n f = x^A x^{A'} x^n \partial^{n+1} f$ for some quantity $\partial^{n+1} f$ of weight $-n-2$. Transferring $A = B^2 Z$, and $A^A = B^A B^2 Z$ to the $Z^{AA'}$ coordinate system, we find that \star becomes:

$$0 = g^{A(A'B')B} + x^A x^B x^C \partial_C \partial_D (A^A g^{B}) \partial_D + x^A x^B x^C \partial_C \partial_D A^A (A^A g^{B}) \partial_D$$

$$+ \frac{1}{2} x^A x^B x^C \partial_C \partial_D g^{B} d^2 \partial_Z + \partial_Z \partial_D \partial_C \partial_D \partial_D \partial_C \partial_D \partial_D d^2$$

where ϵ, d are the concrete indices associated to the $Z^{AA'}$ coordinate system; $\epsilon = CC'$ etc.. If we adjoin to this the equation $g^{A(A'B')B} = \Omega^2 e^{AB} \epsilon^{A'B'}$ where Ω is the undetermined conformal factor, one can solve for g^{ab} provided $(x^A x^A \partial_{AA'} A^A x^A x^A \partial_{AA'} A^A) \neq 1.$