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New contours with boundary, higher order diagrams,
regularisation and massive propagators.

This note will further discuss and extend the "new” contours with
boundary described in TN30. It turns out that these give the technical
basis for a whole slew of advances in twistor diagram theory.

( 1 ) An application of the spinor integral described in TN30. It follows
from (2) on page 34 there, that there's a contour for the (projective)

diagram 6 n
¢ D /
m

X 2

which allows CD = GH, R - S. This can be shown to induce a contour for
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showing that the extra W. Z boundary line, as described in the article by
L.).OD.in TN 31, is redundant.

(2) By an extension of this idea we can also produce contours for
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which makes some progress towards building higher order diagrams
systematically.
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(3) In TN30 I discussed explicit construction of the "Huggett” contour for
the (projective) diagram

This can be thought of as

where the “springy” pole restricts from CP3 to CP2, so that the integral
becomes a CP2 analogy of the spinor integral just discussed. (The non-
springy pole has the property of being inessential to the contour). Now this
turns out to be just part of the following scheme of related integrals:
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Contours will also exist when the internal line is not a pole but a boundary.
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These cases are all of interest but the "super-Huggett" in CP? has a
particular application. First [ give an evaluation of it:
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which can if desired be expressed as the sum of 8 dilogarithms. By thinking
of C2 as ( CPZ - line at infinity), we can apply this integral to
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and so to the inhomogeneous twistor diagrams )
3

The point of this is that it allows a solution of the problem I described in
TN28, that of finding a genuine contour with boundary for the
inhomogeneous diagram

In that article I showed how the right answer for this diagram (which
should be thought of as the most fundamenta/ box diagram) could be
obtained by a Pochhammer-contour construction involving the inhomo-
geneity in an essential way. This method chesred however, in that [ had
to substitute logarithms for two of the boundary lines. I conjectured that
this should not actually be necessary. The existence of the super-Huggett
contour shows how we can avoid this cheat. Instead, what we need to do is
to add in two extra inhomogeneous boundaries at infinity, i.e. consider
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This diagram can be explicitly integrated to yield the right answer. The
idea is to integrate out W, and 2"first. In fact I'll only give the result for
the rather simpler case
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because this has got just the same singularity structure in X" and Y,, while
avoiding the complication due to the spin-1 fields. The result (obtained by
applying the cpP? integral formula given above) can be put in the form:
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To proceed with the integration, we take a loop from Y.X = k, round the

branch point at xS
&8
¢ co

and back again. All terms but the first dilogarithm contribute zero and the
computation thereafter runs just as in the “cheating” method. Since the
result is conformally inyariant, it seems very likely that the added
boundarieson WY =m, XZ = m are in fact redundant and could be filled
in by suitable "caps” to construct a contour with boundaries only as
originally given. (However, the use of these extra boundaries is legitimate

anyway according to current diagram philosophy, so this argument is not
crucial).
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Note: the article by L. J. OD. in this TN describes the analogous
construction in the rather simpler case of

7

(4) There is yet a further generalisation of these integrals. Note that the
projective diagram

Q

P
A i
allows A.C = 0 (in fact the answer is then P Py P\ Q ) .

It follows that there is (in general position) a contour for the integral
DwW2
(w.e)ta 2 "{__Q,
w.2>9 2C

W‘Qﬁro) P.2=0

For when A. C - 0 this is just the same integral; now move the parameters
and the contour must survive. Transfercing this observation to the
inhomogeneous context, this tells us that there are contours for integrals of

form D*WZ .
= =
(W.Z)
w.2>k

which we have already noted are crucial for regularisation (see the end of
my article in TN 31, and also L. J. O'D in this TN.) It &/so tells us there are
contours for integrals of form
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and this now turns out to yield a key new idea in the incorporation of
massve fields into twistor diagram theory.
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To see this, note that the heart of the problem is the representation of the
Feyaman propagator function, which (in the scalar case) satisfies

(Dx‘i m")&;b"bi w) = 8()"3)

A formal solution of this equation is given by
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but of course the inverse derivatives are so far undefined.
To proceed [ shall compose everything with test fields, i.e. perform
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This Barnes integral representation supplies a definitive specification of
how the inverse derivatives are to be chosen: namely that the nth inverse

derivative must correspond to the residue of this Barnes integral at
s$=n-1.

. . . Nt 2
For instance it tells us that the n = | term is ("J( wle- ) ) LK
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and the n = 2 term is i [“3 (mz((_J)l) & ZWJZ“' [ |A3(m\(1~J)142K’ I:) + _%



28

These expressions can be thought of as regularisations of the divergent
Fourier integrals
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We have earlier shown how infra-red and ultra-violet divergences can be
regularised by inhomogeneous twistor diagrams. Can the same be done for
these? Yes, it seems! The key idea is the combination of pole Qtr% )" and
boundary at N2 » wa)

To see this explicitly, consider the diagram
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where for temporary purposes | have indicated the factors (X Z) > (WL:,' >
P
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so if a contour exists such that the RHS integral yields ( (=) )
-\ -2
then the LHS must correspond to a solution of C:) P ( (e—9)' )
In fact, such a contour does exist, and explicit evaluation gives
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Similarly for n = 2, we can write down and then evaluate
< s
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(so that here the "new" contour with boundary plays an essential role.)

Obviously these results have general agreement in form with the
expressions which sum to the Feynman propagator, but eract agreement
implies something more. Firstly it suggests that we make a specific choice
of the hitherto undeter mined parameter k, namely

XXX k = 6’2{ SXXX

In fact this is essential if the m that enters into the specification of the
boundary contour is to be equal to the m that appears in the coefficients of
the power series.
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Secondly, there remains the discrepancy of “/2 . Examination shows that
this can be removedﬁprovi.ded we amend the prescriptions so that
boundaries can lieon ¥2 =Xwm Y=L . Asyet thisis only an #d soc
fix; underlying it is the fact that there are some questions of sign and
time-direction which are closely involved in the definition of the Feynman
propagator, and which have not yet been clarified. Furthermore it is not
yet proved that that correct quantities can be generated for n = 3, 4, ...

However, it seems very likely that there exists an integral scheme based on
this contour structure which does allow the Feynman propagator (and «

farlors, the on-shell propagator) to emerge as & series of well-defined
finite terms.

7| ~)
Note that the factors ®2) , (vey) , Which play a key role here, are simply
the results of evaluating the constant scalar field, ie.
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So the structure we are building here requires only the same ingredients as
have been used in the description of massless field theory, with the sole
addition of the constant field treated as an external field.
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This suggests that the structure can be direct/y related to the “standard
model” picture of massless fields acquiring mass through interaction with
the constant Higgs field.

In the standard model the electron propagator is thought of as a sum over
a series of {massless) Feynman diagrams of form

/ + - 4+ 2“"‘ 1 —'% . o s

although this summation is purely formal, as none but the first of these has
any finite meaning. But my prediction is that these divergent zigzag
Feynman diagrams correspond systematically to perfectly finite twistor
diagrams, each with a “skeleton” essentially of form

\

These should sum as an infinite series exactly to the correct massive
propagator function. Much work still needed to show this though.

AP M.  Andrew Hodges



