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We construct a twistor expression (6) satisfying twistor analogues of (1), (2) in order 1o factlitate
calculations of scattering amplitudes with exterior gauge potentials.

As an example let us consider the lowest-order contribution to the amplitude of the following
process arising from the Standard Model:

where v ,.(k}), By(k,) and ¥ (-k3), §(—k4) are the (Fourier transforms of the) ingoing and

outgoing (positve energy) fields, resp.. By(k,) is a U(1) gauge potential in Lorenz gauge
k,Bak) =0 (1)
such that -

(in momentum space), where O any 'V(an) satisfy massless free-field equations.

Summing the contributing Feynman diagrams which,taken separately,are not gauge invariant
{n (1)

Y
we get a momentum space integral (massless theory):
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up to some costant factors (coupling constants, i's, ... ),
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It then nvolves quite some spinor algebra, using
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to show how the above integral only depends on G(CB), ‘{’(C.B.) and not on the gauge (cf. [1]). In

fact, one finds that the term involving ‘P(C.B.) vanishes (see (9)) and therefore one has helicity

conservation (i.e. total incoming helicity = 0).

Since the relations (4) are already implicit in the algebra of a twistor diagram one is led to consider

a (formal) twistor expression for B,(k,) which also entails (1), (2) (& (5)). As one has the

correspondence of operators

-
idxAA (Minkowski space) € k- (momentum space) &> — Xdx (on generating functions on
-
twistor space)

we represent

= | m/
B, (k) © X V(@x V) f (X% + Udg(XU)! f, (X¥) (6)
S S

-~

where V , U® are auxiliary twistors (corresponding to some gauge freedom) and f 4(X°‘)’
f ((X?) are twistor functions of homogeneity -4 , O resp. . Then

k,Ba(k) & anxV(axV) Lf (X% + aanXU(XU) Lfo(X®) =0 (7
oo
and
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independent of V , U% . This construction facilitates our calculations quite a bit. For example it is

straightforward to verify that (3) =0 for Fy, =¥ 4 p€p
Let
(k)HZf \2% ) Xolky) @y g Wo)

BB(kZ)HXV(a‘_\'/) h_ (X%, 6k e ,(Ye)

be representations of the exterior fields and potential by (dual) twistor functions. Then
by
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with F = fghj. The twistors outside are contracted into the [ ] - bracket from left 1o right in the
obvious way.
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Operating on the single box this yields D =
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The amplitude corresponding to the a.s.d. part of F,;, leads to a twistor diagram independent of U

corresponding to the spinor expression

A'BB'C’ knkz‘klks K Bk DE' A
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Similarly in the non-abelian case a perturbative expansion in powers of coupling constants (g")

(<4 -4
relates the exterior free ﬁelgs ¥ apye® ©anye® of order glin
o
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linearly to the gauge potentials (again taken to satisfy the Lorenz gauge condition V Atg® =

d,A*e?® = 0). An analogous construction as in (6) can therefore be used.

One can apply this also to cases of higher helicities, such as for example in [2], as long as one 1s
over flat space. If one looks at these potentials classically one has to ask, however, what their
space-time version looks like (i.c. how they are to be ‘contour-integrated’) and they might tumn out
not 1o be very general.
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