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On the Topology of Quaternionic
Manifolds

Claude LeBrun
March 11, 1991

Recall that a Riemannian manifold (M, g) of dimension 4k, k > 2, is said
to be gquaternionic-Kahler if its holonomy group is a subgroup of
[Sp(k) x Sp(1)]/Z;. Such manifolds are interesting, not only because they
are automatically Einstein and occur in the holonomy classification of Rie-
mannian geometries, but also because they have twistor spaces analogous to
those familiar from dimension 4. Indeed, in the special case of k = 1, we
define (M, g) to be gquaternionic-Kahler iff it is self-dual Einstein.

The only known examples of compact quaternionic-Kahler manifolds of
scalar curvature R # 0 are symmetric spaces, and indeed there are theorems
[2, 4] asserting that a compact quaternionic-Kahler manifold of dimension 4
or 8 with R > 0 must be symmetric. While it remains unclear whether or
not such a result might hold in higher dimensions, I would like to point out
that, in this direction, one can at least say the following:

Theorem 1 Let (M, g) be a compact quaternionic-Kdahler 4k-manifold with
R > 0. Then either

(a) b2(M) = 0; or else

(b) M is the symmetric space G3(C*+?) = SU(k + 2)/S(U(k) x U(2)).

With a little bit of twistor theory, this is in fact an immediate consequence
of some recent advances in algebraic geometry stemming from Mori’s theory
of extremal rays [3]. Let us begin by recalling that a compact quaternionic-
Kahler 4k-manifold with R > 0 has as its twistor space a compact complex
(2k + 1)-manifold Z which admits a complex contact form and a Kahler-
Einstein metric with positive scalar curvature. In particular, ¢; > 0, so that
Z is a so-called Fano manifold, and c, is divisible by k + 1. We can therefore
invoke the following result of Wiéniewski [6):



Z

Theorem 2 (Wisniewski). Let X be a Fano manifold of dimension
2r — 1 for which ric;. Then by(X) = 1 unless X is one of the following:
(s) CP,_y x Q, ; (i) P(T*CP,) ; or (is) CPy,_, blown up along CP,_,.

Here Q, C CP,,, denotes the r-quadric— that is, r-dimensional compact-
ified complexified Minkowski space— while the projectivization of a bundle
E — Y is defined by P(E) :=(E - 0y)/(C - 0).

On the other hand, spaces (i) and (iii) aren’t complex contact manifolds,
as follows most easily seen from the fact that that I'(CP,_,,1!(1)) = 0, so0
that the obvious foliations by CP,_;’s would necessarily have Legendrian
leaves, so that these spaces would then have to be of the form P(T*Y),
where Y is the leaf space Q, or CP,; contradiction. So the only candidate
for a twistor space is (i), which is indeed the twistor space of G,(C**?).
Theorem 1 now follows from the Leray-Hirsch theorem on sphere bundles:
b:(2) = ba(M) + 1.

In dimension 4, Theorem 1 contains Hitchin's result [2], since a compact
self-dual manifold with b; = 0 must be conformally flat. On the other hand,
there are already two symmetric examples with b, = 0 dimension 8, so the
Poon-Salamon result [4] really contains further information about this case.

Is there a more elementary proof of Theorem 17 Haiwen Chen (private
communication) has given a Weitzenbock argument for a weaker version of
this theorem, but his proof unfortunately requires the hypothesis of positive
sectional curvature.

Acknowledgements. The author would like to thank Shigeru Mukai
and Janoé Kolldr for their helpful explanations of the theory of Fano mani-
folds. ‘
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Homogeneity of Twistor Spaces

Andrew F. Swann

Let Z be a twistor space of a quaternionic Kahler manifold M of positive scalar
curvature. If Z is compact and homogeneous, then it is known that M is symmet-
ric {1]. In this note we will be concerned with the case when Z is not necessarily
compact but is still homogeneous.

Such a twistor space is a complex contact manifold of dimension 2n + 1, so
possesses a line bundle £ and a holomorphic 1-form 6 € (L) such that 8 A
(d9)™ vanishes nowhere. A holomorphic vector field on Z is an infinitesimal contact
transformation if it preserves § up to scale. We say Z is a homogeneous twistor
space if the connected component G of the identity of the group of holomorphic
contact transformations of Z acts transitively.

Lichnerowicz [2] shows that homogenous complex contact manifolds are related
to coadjoint orbits. The construction is just derived from that for homogeneous
symplectic spaces. Let H be the stabiliser of a point and let g and ) be the Lie
algebras of G and H. We have an exact sequence

0—kerd —T'Z-5 00,

so 0* gives an inclusion of L* into TV*Z = Annh C g*. If » is the projection

L* — Z, then we may define a holomorphic 1-form a on £* by

a(v) = BB(x.v)) = (6°b)(xsv),

for v € T)L* and w = da is then a complex symplectic form on £*. Now any
holomorphic contact transformation of Z lifts to a transformation preserving a and

hence w, so if X is the lift of a vector field X we have
X.w=X.da=Lga-d(Xia)=—d(X.,a),

showing that the immersion £* — g* is just a moment map, up to sign. Note that
the moment map commutes with action of the scalars on the fibres of £L*. Now, in

general, if 4% is a moment map for a vector field X, then the moment map p!X¥1



of the bracket of two vector fields differs from the Poisson bracket {u*,u¥} by a
constant. However, in our case, both these expressions are linear functions fibrewise,
so the constant must be zero (cf. [3]). Thus the image of the moment map is a union
of orbits for coadjoint action of G on g*.

In the case of homogeneous complex contact manifolds there are now two cases:
cither G acts transitively on £* \ 0 or it does not. However, if Z is a twistor space
then £*\ 0 is a hyperKahler manifold whose tangent 'space contains the lift of ker§
as quaternionic subspace [4]. For a given point of £*\ 0 we may now use the action
of the complex structures J and K on the tangent space of L* \ 0 to obtain a
holomorphic vector field generating the action of the scalars through that point, so
the image of the moment map consists of just one orbit (which contains zero in its
closure).

If G is reductive, then we may choose an invariant inner product and identify g*
with g. The image of £* \ 0 is now a nilpotent orbit in the semi-simple part of g.
However, it was shown in [4], that the projectivisation of a nilpotent orbit is the

twistor space of a quaternionic manifold of positive scalar curvature. To summarise:

If Z is a twistor space of a quaternionic Kahler manifold of positive scalar
curvature such that Z is homogeneous as a complez contact manifold and

. the symmetry group G is reductive, then Z is the projectivisation of a
nilpotent orbit of the semi-simple part of g, up to finite covers.

Acknowledgements. | would like to thank C.R. Lebrun for useful discussions.
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Appendix: explicit coordinate expressions
One of the main features of the Kozameh-Newman formalism is the use of the 4
functions Z44' = 9494'Z at some fixed 7, ¥, as coordinates on . The 0 and 1*
derivatives of Z are determined from Z44' by Z = x % ,Z44" and 24" = x,Z44’ (these
follow from the homogeneity of Z) so ZA4' ig the part of the second jet of Z as a
function of x ,,, ¥4 containing only the mixed second derivatives. In flat space Z can be
taken to be Z = z44'x ¥, where z44' are affine coordinates on Minkowski space, so
ZAA' _ LAd _
Note that if a quantity f has homogenelty n m x ., then x 34 3"‘ a* "f 0 by
homogeneity so that 94'9" 1.9 "f R "0“‘”[ for some quantity " t'f of
weight —n —2. Transfering A = 8°Z, and A4 = 848°Z to the Z44' coordinate system,
we find that (x) becomes:

0= gA(A'_B')B + i,Ai.BiDBEZ(A'gB')DQ + TA'TB‘TD:agA(AgB)DI‘Q
+ %’A’A‘TB"?A?B(XC:i’Cadozézz + 3£A31;1)g51
where ¢, d are the concrete indices associated to the ZA4' coordinate system; ¢ = CC'

etc.. If we adjoin to this the equation ¢g*4'#18 = 3ABAE where N is the

undetermined conformal factor, one can solve for g* provided (x‘ x40, oA
x‘liAaA,‘.Z) # 1.
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A new programme for light cone cuts and Yang-Mills holonomies

In a series of papers Kozameh & Newman have developed formalisms for the study of
general space-times and Yang-Mills fields that generalize many of the ingredients of the
nonlinear graviton construction and Ward construction to the non self-dual equations.
An important motivation for the study of these formalisms is that it seems likely that
these structures will have to play a role in any twistorial understanding of the full
vacuum and Yang-Mills equations even if only as an intermediate stage in some more
elaborate framework.

To date, however, the incorporation of the full vacuum equations into the light cone
cut formalism has been problematic even in principle and it has only been possible to do
so by introducing substantial additional structure (the holonomy of one of the spin
connections as an additional separate connection satisfying its own equations) Kozameh,
Lamberti & Newman (1990). The purpose of this note is to present a new strategy that
gives a clean articulation of the vacuum equations and more generally the Bach
equations within the framework. The articulation of the field equations reduces to one
scalar differential equation (and some boundary conditions). Unfortunately the
calculations required to obtain an explicit form for the main equation have so far proved
intractable except in the linearized and self-dual case. Nevertheless certain basic
features are clear from its derivation and linearized form.

The basic field equations for the Yang-Mills formalism have already been obtained
in two forms in Kozameh & Newman (1985). However, the new strategy yields a new
point of view on these equations that eliminates various steps in Kozameh & Newman's
approach and shows that only one scalar equation needs to be considered. The Bach
equations are in fact the Yang-Mills equations for the local twistor connection so there
is more contact between the two formalisms than one might have originally supposed.

The proposed strategies are not yet fully worked out and in the fully nonlinear cases
various difficulties remain, so the basic idea will be illustrated by the linearized version
of the theory where the ideas all work. In this note I shall use homogeneous coordinates
that lead to simplifications in the derivation of many of the formulae. In the case of
gravitation I also derive the formalism relative to a space-like hypersurface—asymptotic
simplicity is inessential.

§1 The basic formalism. The formalism for curved space-times is based on an
identification of the space of scaled null geodesics N with T*O(1,1), where O(1,1) is the
line bundle of homogeneity degree (1,1) functions on the sphere. In the usual
presentation of the formalism, O(1,1) is past null infinity and a scaled null geodesic is

represented by a 1-form orthogonal to it at its intersection point with null infinity. The
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identification can also be made by identifying the light cone of a finite point of Ab with
0O(1,1) and N with its cotangent bundle.

The bundle O(1,1) is coordinatized by (u,x ,.,% ) which are taken to be homogeneous
coordinates, (u, ,%4) ~ (A, Ax A% ,), x, #0. If u=2Z(x,,x,) is a section of
O(1,1), then it determines the cotangent vector (BA'Z)dxA. + (042)dx, where
3% = 0/dx ., 8* = /9%, and homogeneity implies that Z = x,04°Z = %,34Z. The
cotangent bundle of O(1,1) can therefore be coordinatized by (Z4,x A.,ZA',i' 4) subject to
the relation « A,Z“' = %,2*. (These coordinates, strictly speaking, involve an additional
phase—we are really dealing with the space of null geodesics with a complex scale, that
is a parallel propagated spinor aligned along the null geodesic rather than just a
covector.)

Remark: One can also produce such an identification relative to a spacelike
hypersurface J6. All the spinor indices in the following should be taken to be concrete.

Choose coordinates z44

" on a space-time b such that for some fixed T aa» J6 18 given by
T, z*4 =0. Let x, be homogeneous coordinates on CP. Define
Z(z,x yyx4) = z*4'x ,7,. The space of scaled null geodesics is canonically identified
with T*}. We define a map from T*(0(1,1)) to T*% by identifying the point
(ZAx A,,Z“‘,x 4) in T*(O(1,1)) with the cotangent vector x & 1dz44" at the point z44'
whose coordinates are determined by the relations T, A,x‘":O, A% A.:Z“ and
zA4%, = Z*' (these are only 4 relations as x,Z4 =#%,Z4). The coordinates
(Z4x ;nZ%x,) can be thought of as being coordinates on the spin bundle of b
restricted to 3 (although for this one must choose an arbitrary identification of phase of
%, with that of the spinors) and can be continued to be functions on the spin bundle of
At by requiring that they be constant along the null geodesic spray. Note that the
identification of the =, with the spinors at each point cannot be made to be
holomorphic without substantial restriction on the curvature.

Clearly, such an identification encodes little of the space-time geometry. The conformal
structure is encoded by the knowledge, for each z in b, of the $? in PN of light rays
incident with 2. This can be represented by a ‘cut function’ Z(z,x,%) which yields the
S? of light rays incident with z as (24,7, 2%, %) = (0%2,x,,0%'Z,%,) in T*(0(1,1)).
The cut function should be thought of as a generating function for these $%’s—the S*'s
are always regular, whereas Z may well be singular. The cut function is the basic

varniable in the formalism.
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§2 The reconstruction of the conformal structure from the cut function. This relies only
on the property that, for each x,, Z is constant along a foliation by null hypersurfaces
and that, for fixed z, as x,, varies, these surfaces vary through all null hypersurface
elements at z (this follows from the fact that holding Z and r,, and %, constant gives a
Legendrian submanifold in PN and hence a null hypersurface in A&). Let 3, denote the
coordinate derivative on Ab holding 7, constant. Then the conformal metric on 1-
forms is determined by the condition ¢**9,Z 8,2 =0 as x,, and %, vary. (Here the
indices a,b ... are regular tangent space indices to Ab.) If an arbitrary Z has been given
(as we shall often suppose) as x and * vary, 3,Z will determine a ‘crinkly cone’ in T* M
that will not be quadratic and will give rise to a conformal Lorentzian analogue of a
Finslerian structure.

At a fixed value of x and ¥ one can obtain an expression for the metric that best
approximates the crinkly cone at that value of * and # in terms of derivatives of Z and
an arbitrary conformal factor by observing that if ¢°® were independent of 4 and %4,
then ¢*0,Z 0,Z = 0 would imply

g°1040P3%' 9% (8,2 8,2) = 0 (1)

This is 9 equations on 10 unknowns and therefore determines a 1-dimensional ray in the
space of metrics, that is to say a conformal structure. This ray will in general vary with
x and ¥. The more explicit formulae obtained by Kozameh & Newman can usefully be
written in this notation as well. " This is a convenient framework for explicit
calculations. However, it is complicated, and is not essential for an understanding of
the programme.

We will also be interested in the ‘non-Finslerian’ condition—if a general choice of Z
is made, the conformal structure determined by equation (1) will depend on x,, and ¥ ,.
By taking an additional 34 derivative of (1) we see that the conformal structure will be
independent of #, iff ¢g**(04'90%'8%(9,Z 3,2)) =0. The complex conjugate equation can
be imposed to ensure independence from x ,, also, although if everything is global in = ,,,
g'’ will be global and holomorphic in « 4 and therefore constant by Liouville’s theorem.
It will be shown in the next section that the weaker necessary scalar condition

98 H5(0,28,2) =0 (2)

is sufficient in linearized theory as this condition implies that ¢g°® is harmonic on the
sphere so that the maximum principle holds—the only solutions should be conformal
structures that are constant on the (x ,,#%,) sphere. This is probably also sufficient in

the full nonlinear regime also. The condition that actually arises from the main field
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equation is different so this condition will not be studied any further.

§3 The main field equation. It is difficult to impose the vacuum field equations directly
as the Ricci tensor depends on {2 as well as Z. The strategy I shall follow is to impose
the Bach equations, B,, = 0 instead. These equations are conformally invariant and so
constrain only Z. They are obtained from the conformally invariant Lagrangian
/ C% A"C?, where C% =C%_,dz°,dz* is the Weyl tensor. The Bach tensor
B, = V°VIC, 44— }RC g is symmetric, trace free, divergence free and vanishes
when the Ricci tensor does. The Bach equations are a fourth order set of hyperbolic
equations that lead to a unique evolution of initial data. If the initial data is
constructed from a vacuum evolution of vacuum initial data, then the uniqueness
implies that the vacuum evolution must agree with the Bach tensor evolution. Thus, if
the Bach equations are imposed, the restriction to the vacuum equations can be
implemented by choice of boundary conditions or initial data. In particular, if the
space-time 18 obtained from Bach tensor evolution of the standard data at null infinity
it must necessarily be conformal to vacuum. The main field equation will be the scalar
equation

I"led,(a:, LD *A) =0 (3)

where B,(z,x,X) is the Bach tensor as computed from the conformal structure
determined by equation (1) at a fixed value of (x,¥), and I, = 3,Z(z,x,%). Clearly, as
*, and ¥, vary we will obtain all the Bach equations when the conformal structure is
independent of x and 7.

In linearized and half conformally flat theory this equation has the following
remarkable features. The {3, derivatives can be integrated directly to yield an
equatibn for Z as a function of » and * with the z coordinates merely parametrizing the
solution space. The equation descends to an equation in N that, together with global
considerations, determines which two spheres correspond to light cones of points of .
Secondly, the solutions for Z, if global with the correct boundary conditions, lead to a
conformal structure that is independent of » and * and hence satisfying the Bach
equations.

This can be demonstrated in linearized theory as follows. In linearized theory
Z= x‘A'xA,fA + 2(z, 7, %), ¢°® = n* + h** with z and h small and equation (1) reduces
to:

ket = 94989498 (L2)
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where L = x°%°3,.. Then a short computation shows that the main equation, (3), is
just L[*®*8*z = 0. If the boundary conditions appropriate to the linearized vacuum
equations are imposed, this can be integrated to give

88z = % + &0 (4)

where o = a(z“‘iAxA,, x4 ¥4) etc. is the linearized asymtotic shear which is the free
data for the field. This can be integrated directly by means of a Greens function to
yield:

2(z,x,X) = f | x /4| Ylog | x (x4 | ’(026 + 520)1’A.d11",\1‘r"4d1?".

In order for this to yield an actual solution of the linearized vacuum equations we
must have that h,, as derived from the linearization of (1) is independent of » and 7.
One can prove this in various ways, but the most suitable way for generalization is as
follows.

Start with the main equation L®8°8%°2=0. Act on this with the operator
N =9,,0%*. It turns out that [N,L*]=30LYY + T +6) where T = wA,a‘l is the
homogeneity operator and so the commutator vanishes on quantities of weight
(—3,~3) such as 8°8z. We also have the relation N8°8 = &L so that the main

equation implies

0= NL®8: = L’N$*®:
= L*8°®(L2).

This integrates to yield 8&(Lz) =0. However, 8dh,, = x AT gk AX8P®(Lz) so this
equation will imply that k,, is harmonic on the (x,%)-sphere and so, by globality and
the maximum principle it is independent of x and 7.

In the curved case, then, one expects that one can find a global solution Z(z,x,7) to
equation (3) given appropriate asymptotic data (to see existence, one needs only to use
the asymptotic data to produce the space-time, and then use the space-time to produce
Z). As a heuristic argument that this solution of equation (3) is unique with given
boundary data, identify (z,x,%) space with the total space of the spin bundle with
coordinates (z, (5 "Z'Z) in the natural way (the tilde over the spinor indices for the spin
bundle is to emphasize that they are not the same as those introduced above and
furthermore that they should be considered to be abstract). The operator N will be
represented as Y;;,@"Z '63 where V- ., is the horizontal lift of the space-time
derivative, and 04 = 8/3(* etc. If we act on the main equation 1B (2,7 41, T ) = 0

with N we obtain a scalar equation that is a necessary condition for the conformal
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structure to be non-Finslerian, since if the conformal structure is non-Finslerian,
NI*t*B,,(z,x ;,%4) =0 as a consequence of V°B,, =0. We have seen above in the
linearized case, with the appropriate boundary conditions, that this condition is also
sufficient. It remains to prove that this condition will be sufficient in the curved case
also. 1If so, then the space-time must necessarily satisfy B, =0 and have the given
asymptotic data and therefore by uniqueness of evolution of the Bach equations be
unique. Note that the equation N{**B(z,x ,,%,) =0 on its own can be regarded as a
kinematic equation that together with globality should lead to a non-Finslerian
conformal structure—it is an identity, following from V°B =0, for a genuine

conformal structure.

84 The Yang-Mills case. So far the explicit computation of equation (3) in terms of Z
and its derivatives has proved intractable. However, the Yang-Mills analogue of the
above ideas can be fully worked out in Minkowski space. Let D, =38, ~, be a Yang-
Mills connection on M. The basic object of interest is the parallel propagator along
light rays, a matrix valued funtion on the spin bundle of M G(x,x,%) satisfying
A%AD aa'G(z, 7, %) = 0. The connection is determined by the equation

744 = 0494LG o G~ 1) (1)

where L = xA'%49 aar 88 above. If G has been chosen arbitrarily, v, will depend on 7
and 7 as well as z. The main field equation is

A #ADPF , =0 (2"

in which F, is the curvature of the connection v,. This yields the following equation
on G: '

L38J +[J, L3I} +3[LT, L* ] = 0. (3)

where J =G~ '8G. In the Abelian case this can be integrated to give 83 log
G =8A + A where A = A(z*"'x A4, % 4, ¥4) i8 part of the asymptotic connection.
The analogue of the non-Finslerian condition can be stated as &7, = 8y, =0. As
before, if we have globality, this will be guaranteed by the weaker condition
dd+ AL =TT AD?0% LG oG~ ') =0 using the maximum principle for solutions of the
Laplacian on S?. The non-Finslerian condition that arises from equation (2') is obtained
by acting on (2') with DAA,GAIBA. Note that this vanishes automatically when 1+, is
independent of 7 and 7 as a consequence of the Bianchi identity D*D*F_, =0 so the

vanishing of this quantity is a necessary condition if ~, is to be non-Finslerian. In the
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linearized case it yields L*3*8*(LG oG ~') = 0 which with suitable boundary conditions
can be integrated to give the weaker version of the non-Finslerian condition. In the
nonlinear case a more complicated equation is obtained, and its sufficiencey as a non-
Finslerian condition has not yet been proved. Note that this equation if imposed on its
own only constrains the vy, dependence on x and %, and there is no restriction on the z

dependence.

§ 5 Conclusions and outlook: It seems likely that the main scalar equations, (3)and (3')
on Z and G are sufficient to encode the full Bach/Einstein equations and Yang-Mills
equations. However, these equations are in effect articulated on the spin bundle of
space-time, whereas the all important feature of the linearized and half flat cases is that
the main field equation can be integrated directly to yield equations for G or Z on N.
Otherwise put, the equations of the linearized and half flat case yield precisely the
condition that certain structures descend to N and that these structures can be used to
write down the equations that determine Z and G. (In the half flat case the relevant
structure is a complex structure.) It is this feature that leads to the twistor
constructions. Unfortunately it is not even plausible that the main equations above will
descend to N in this way, as it is easy to persuade oneself that if this were indeed
possible, then the full Yang-Mills and Einstein equations would satisfy the Huygens
property—that is, the solution at a point would depend only on the initial data at the
intersection of the light cone at that point with the data surface. Instead, if the above
ideas are to lead to a twistor construction for the full Yang-Mills and Einstein equation,
there must be a further non-local transform to encode the structures on N or twistor
space.

I would like to acknowledge many fruitful discussions with Kozameh & Newman and
the hospitality of the physics department at the University of Pittsburgh where many of
these ideas were first generated.
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New contours with boundary, higher order diagrams,
regularisation and massive propagators.

This note will further discuss and extend the "new” contours with
boundary described in TN30. It turns out that these give the technical
basis for a whole slew of advances in twistor diagram theory.

( 1 ) An application of the spinor integral described in TN30. It follows
from (2) on page 34 there, that there's a contour for the (projective)

diagram 6 n
¢ D /
m

X 2

which allows CD = GH, R - S. This can be shown to induce a contour for

wtifi?\(
v 2

showing that the extra W. Z boundary line, as described in the article by
L.).OD.in TN 31, is redundant.

(2) By an extension of this idea we can also produce contours for

o . / v L
N ¥ d
\ . 3 P
= \ = J 4
— \ V4 ) '
A |,/
U4
A TN A
/ . N 4 ~
N 7/ A

FwaM&N

K

which makes some progress towards building higher order diagrams
systematically.
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(3) In TN30 I discussed explicit construction of the "Huggett” contour for
the (projective) diagram

This can be thought of as

where the “springy” pole restricts from CP3 to CP2, so that the integral
becomes a CP2 analogy of the spinor integral just discussed. (The non-
springy pole has the property of being inessential to the contour). Now this
turns out to be just part of the following scheme of related integrals:

P e

«—

. \ y \
with relations:
‘L is just increase in dimension

)
'supe - Mgyt

£4— i3 "period”’ 2 W
< Wz
\ is through _33‘_2* e |

Contours will also exist when the internal line is not a pole but a boundary.
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These cases are all of interest but the "super-Huggett" in CP? has a
particular application. First [ give an evaluation of it:

il e ¥
\
D‘\gl\ Dz‘(L do| AV Y Y2 ¥,
- Loty (8¢ o, oy o, 3 B4 44
(5.6)(q.5)(5. Q) —w —uv ! !
; PS 1 1 < o g4 T SRR SR
4,20, J d, =0
(l.x"o, fl.){q,:o ¥ 2 sieilac beoms obbaned lj
\ d.é.—’?-lz' X\c—?)(z

which can if desired be expressed as the sum of 8 dilogarithms. By thinking
of C2 as ( CPZ - line at infinity), we can apply this integral to

Al ndty
alietbials A
(x.9y — k,)t

.ok, N>k, 3
9. >k, 4.4 ky
and so to the inhomogeneous twistor diagrams )
3

The point of this is that it allows a solution of the problem I described in
TN28, that of finding a genuine contour with boundary for the
inhomogeneous diagram

In that article I showed how the right answer for this diagram (which
should be thought of as the most fundamenta/ box diagram) could be
obtained by a Pochhammer-contour construction involving the inhomo-
geneity in an essential way. This method chesred however, in that [ had
to substitute logarithms for two of the boundary lines. I conjectured that
this should not actually be necessary. The existence of the super-Huggett
contour shows how we can avoid this cheat. Instead, what we need to do is
to add in two extra inhomogeneous boundaries at infinity, i.e. consider
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This diagram can be explicitly integrated to yield the right answer. The
idea is to integrate out W, and 2"first. In fact I'll only give the result for
the rather simpler case

C D y D¥w ADd*Z
w ~ . ww A B fw Y
e c\/‘bz‘,i(z k)
2 X w.x=l\<
27K
AR :,(ﬁ.m,{‘xvm

because this has got just the same singularity structure in X" and Y,, while
avoiding the complication due to the spin-1 fields. The result (obtained by
applying the cpP? integral formula given above) can be put in the form:

2 kﬁ JM‘L'\B
-% __,A{\,oj(" o ,.A.‘\QJ( e
YaB 3 xh
H’ch wi C
% 3 1 AR
-k -
— L ﬁa K ¢cO
3 (T Jies

— W8
*.\_* *
*te © V: ;CD

To proceed with the integration, we take a loop from Y.X = k, round the

branch point at xS
&8
¢ co

and back again. All terms but the first dilogarithm contribute zero and the
computation thereafter runs just as in the “cheating” method. Since the
result is conformally inyariant, it seems very likely that the added
boundarieson WY =m, XZ = m are in fact redundant and could be filled
in by suitable "caps” to construct a contour with boundaries only as
originally given. (However, the use of these extra boundaries is legitimate

anyway according to current diagram philosophy, so this argument is not
crucial).
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Note: the article by L. J. OD. in this TN describes the analogous
construction in the rather simpler case of

7

(4) There is yet a further generalisation of these integrals. Note that the
projective diagram

Q

P
A i
allows A.C = 0 (in fact the answer is then P Py P\ Q ) .

It follows that there is (in general position) a contour for the integral
DwW2
(w.e)ta 2 "{__Q,
w.2>9 2C

W‘Qﬁro) P.2=0

For when A. C - 0 this is just the same integral; now move the parameters
and the contour must survive. Transfercing this observation to the
inhomogeneous context, this tells us that there are contours for integrals of

form D*WZ .
= =
(W.Z)
w.2>k

which we have already noted are crucial for regularisation (see the end of
my article in TN 31, and also L. J. O'D in this TN.) It &/so tells us there are
contours for integrals of form

§: b"’xoz .
2 )
X2 7 (

and this now turns out to yield a key new idea in the incorporation of
massve fields into twistor diagram theory.
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To see this, note that the heart of the problem is the representation of the
Feyaman propagator function, which (in the scalar case) satisfies

(Dx‘i m")&;b"bi w) = 8()"3)

A formal solution of this equation is given by
*9
A=\ -\
D=y = Zet)T O S e-y)
\ B

but of course the inverse derivatives are so far undefined.
To proceed [ shall compose everything with test fields, i.e. perform

SS A% &%y (e Ly=9") 2

We have
\
A"' AY %()t-—g) _ .
ﬁ 0 (e ) (9~ V) ((r=3)*)
3
and d‘ *Q A; ()('3) w) _ S(Mt(('JY,) r{-’)rl\—f) As
- —’_—_/
" ) \
ﬁ AT Dy e
\ 2 3 S - rla«c

This Barnes integral representation supplies a definitive specification of
how the inverse derivatives are to be chosen: namely that the nth inverse

derivative must correspond to the residue of this Barnes integral at
s$=n-1.

. . . Nt 2
For instance it tells us that the n = | term is ("J( wle- ) ) LK

(r-3)°

(2
and the n = 2 term is i [“3 (mz((_J)l) & ZWJZ“' [ |A3(m\(1~J)142K’ I:) + _%
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These expressions can be thought of as regularisations of the divergent
Fourier integrals

—plr=J)
A “P L S—
)"
}ionelke

P

We have earlier shown how infra-red and ultra-violet divergences can be
regularised by inhomogeneous twistor diagrams. Can the same be done for
these? Yes, it seems! The key idea is the combination of pole Qtr% )" and
boundary at N2 » wa)

To see this explicitly, consider the diagram

S s
w b {
X 2
C C - -\
'
where for temporary purposes | have indicated the factors (X Z) > (WL:,' >
P
by K 2 Pl WM
~\/
This formally satisfies
Ky $ s S
\

1, =

p
e c \

-2
(2
so if a contour exists such that the RHS integral yields ( (=) )
-\ -2
then the LHS must correspond to a solution of C:) P ( (e—9)' )
In fact, such a contour does exist, and explicit evaluation gives

L log ("_:_; (r-J)")

l('r)z
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Similarly for n = 2, we can write down and then evaluate
< s

(2
_— (»3("!‘:2”-:)')]5 [bea( i) ] — T

e -

(so that here the "new" contour with boundary plays an essential role.)

Obviously these results have general agreement in form with the
expressions which sum to the Feynman propagator, but eract agreement
implies something more. Firstly it suggests that we make a specific choice
of the hitherto undeter mined parameter k, namely

XXX k = 6’2{ SXXX

In fact this is essential if the m that enters into the specification of the
boundary contour is to be equal to the m that appears in the coefficients of
the power series.

' 5

Secondly, there remains the discrepancy of “/2 . Examination shows that
this can be removedﬁprovi.ded we amend the prescriptions so that
boundaries can lieon ¥2 =Xwm Y=L . Asyet thisis only an #d soc
fix; underlying it is the fact that there are some questions of sign and
time-direction which are closely involved in the definition of the Feynman
propagator, and which have not yet been clarified. Furthermore it is not
yet proved that that correct quantities can be generated for n = 3, 4, ...

However, it seems very likely that there exists an integral scheme based on
this contour structure which does allow the Feynman propagator (and «

farlors, the on-shell propagator) to emerge as & series of well-defined
finite terms.

7| ~)
Note that the factors ®2) , (vey) , Which play a key role here, are simply
the results of evaluating the constant scalar field, ie.

A ¢
TN - x/%@ . w Yy = v
x e T X2 SR \\.\“ﬁ)

So the structure we are building here requires only the same ingredients as
have been used in the description of massless field theory, with the sole
addition of the constant field treated as an external field.
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This suggests that the structure can be direct/y related to the “standard
model” picture of massless fields acquiring mass through interaction with
the constant Higgs field.

In the standard model the electron propagator is thought of as a sum over
a series of {massless) Feynman diagrams of form

/ + - 4+ 2“"‘ 1 —'% . o s

although this summation is purely formal, as none but the first of these has
any finite meaning. But my prediction is that these divergent zigzag
Feynman diagrams correspond systematically to perfectly finite twistor
diagrams, each with a “skeleton” essentially of form

\

These should sum as an infinite series exactly to the correct massive
propagator function. Much work still needed to show this though.

AP M.  Andrew Hodges
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istor i i inkowski s

We construct a twistor expression (6) satisfying twistor analogues of (1), (2) in order 1o factlitate
calculations of scattering amplitudes with exterior gauge potentials.

As an example let us consider the lowest-order contribution to the amplitude of the following
process arising from the Standard Model:

where v ,.(k}), By(k,) and ¥ (-k3), §(—k4) are the (Fourier transforms of the) ingoing and

outgoing (positve energy) fields, resp.. By(k,) is a U(1) gauge potential in Lorenz gauge
k,Bak) =0 (1)
such that -

(in momentum space), where O any 'V(an) satisfy massless free-field equations.

Summing the contributing Feynman diagrams which,taken separately,are not gauge invariant
{n (1)

Y
we get a momentum space integral (massless theory):
| ddk, d¥%, ddk4 d¥k, 8*(k1) 8*(1(2) d(ky) d(ky) 8(k1+k2+k3+k4) (I+H+HI) with

I+11+ 1= ¢(ky) xc(ks) Bppiky) W, (k) AABBC 3)

up to some costant factors (coupling constants, i's, ... ),

BC" BA" BB’
ma~ (K, +k,) o k .k o
where  AABEC _ lk k2 AR o k4k BC 4k (AT
152 1X4 k kg
)t -k
= afbec .( hon _ e  BA , BB’
M oaw L, me M4 ac

=€ — € + €
Kk, kk, k K

It then nvolves quite some spinor algebra, using
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Lk]+k2+k3+k4)§0, kig Valkp =k, x,(k) =0 (4

B’ .
kB glk,) =i0

B .
2CB cn)kg) s KycpB glky) = ¥ cpylky) )

to show how the above integral only depends on G(CB), ‘{’(C.B.) and not on the gauge (cf. [1]). In

fact, one finds that the term involving ‘P(C.B.) vanishes (see (9)) and therefore one has helicity

conservation (i.e. total incoming helicity = 0).

Since the relations (4) are already implicit in the algebra of a twistor diagram one is led to consider

a (formal) twistor expression for B,(k,) which also entails (1), (2) (& (5)). As one has the

correspondence of operators

-
idxAA (Minkowski space) € k- (momentum space) &> — Xdx (on generating functions on
-
twistor space)

we represent

= | m/
B, (k) © X V(@x V) f (X% + Udg(XU)! f, (X¥) (6)
S S

-~

where V , U® are auxiliary twistors (corresponding to some gauge freedom) and f 4(X°‘)’
f ((X?) are twistor functions of homogeneity -4 , O resp. . Then

k,Ba(k) & anxV(axV) Lf (X% + aanXU(XU) Lfo(X®) =0 (7
oo
and

O ap, = ~ikacBCB € XX AxVXVYT X + XU 3y (XU f((X%) = 9y if (X)
(. -4 04 S S |
¥ an) o XX if 40X (8)

independent of V , U% . This construction facilitates our calculations quite a bit. For example it is

straightforward to verify that (3) =0 for Fy, =¥ 4 p€p
Let
(k)HZf \2% ) Xolky) @y g Wo)

BB(kZ)HXV(a‘_\'/) h_ (X%, 6k e ,(Ye)

be representations of the exterior fields and potential by (dual) twistor functions. Then
by

ot e M
W ,B o x 088" o {ZXV(G V)™ [HD(P (ZXd ax)"
L

+2([—'Y|})|‘|(za Ya +‘(D(r“-1(za wa H F

conltr
with F = fghj. The twistors outside are contracted into the [ ] - bracket from left 1o right in the
obvious way.

=@xV)1VY [zx awaY (zx azax) 1-2 ZaY xaw (ZaY Yd,) ! - zaw Xdy (Zaw wa, ) HF
od (- (I L) J

= DE.
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W, T
Operating on the single box this yields D =
2 X°
. 1.1 ! R l _ FR |
@ VVY ((alz_‘ax) zx (P - PR -2va,)1xz ] - wa, )Xz ] )
™/
-1 - -1 _
o vz D - 2 ) =0 e

The amplitude corresponding to the a.s.d. part of F,;, leads to a twistor diagram independent of U

corresponding to the spinor expression

A'BB'C’ knkz‘klks K Bk DE' A

A ¢(k4)xc(k3)BBB'(k2)wA'(kl): (klk2)(k2k3)(k3kx) 1E* 3 X WAQDBCP :

Similarly in the non-abelian case a perturbative expansion in powers of coupling constants (g")

(<4 -4
relates the exterior free ﬁelgs ¥ apye® ©anye® of order glin
o

] 4 i
F ¢+gF...= ‘PA.B.: °+geAB‘P...

b® +E,. (3]

€ AB B AB®

AN

& ... ® X
=20 ,A e ~2i8A y A (10)

linearly to the gauge potentials (again taken to satisfy the Lorenz gauge condition V Atg® =

d,A*e?® = 0). An analogous construction as in (6) can therefore be used.

One can apply this also to cases of higher helicities, such as for example in [2], as long as one 1s
over flat space. If one looks at these potentials classically one has to ask, however, what their
space-time version looks like (i.c. how they are to be ‘contour-integrated’) and they might tumn out
not 1o be very general.

[1] F. Miiller (1991). Twistor Diagrams for some scattering amplitudes arising from the Standard
Model. Qualifying dissertation.
[2] R. Penrose (1990). Twistor Theory for Vacuum Space-Times: a New Approach, T N 31, 6-8.
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