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Conformal Singularities
and the Weyl Curvature Hypothesis

Richard P.A.C. Newman*

Abstract A conjecture of K.P. Tod relating Penrose's

Weyl Curvature Hypothesis and the isotropy of the Universe
has recently been proved. Background material and the
method of proof are discussed.

The large scale structure of the Universe is well-known to exhibit a
high degree of spatial isotropy. Claims have been made that this may be due
to quantum processes occurring at times subsequent to the Big Bang, such as
inflation and dissipative particle interactions. According to Penrose (1977)
however, one should seek a more fundamental explanation in terms of entropy
considerations at the Big Bang itself. This view has recently been provided
mathematical substantiation by a development in classical general relativity.

Although Penrose is concerned to apply a condition of zero entropy at
the Big Bang, it is worthwhile to first recall a contrary view of Misner (1968)
that the Big Bang was maximally disordered. One might seek to motivate this
philosophy of 'chaotic cosmology' on the grounds that physical laws based on
field equations are inherently inapplicable at singularities, and that the Big
Bang, being singular, cannot therefore be constrained by such laws. As will be
seen, this view may be naive.. But whatever its motivation, the major problem
for chaotic cosmology is to explain how the high degree of large-scale isotropy
of the present-day Universe could have evolved from an chaotic Big Bang.
Neutrino-induced viscosity (Matzner and Misner (1972)) and curvature-induced
creation of particle pairs (Zel'dovich (1972)) are just two of the possible
isotropization mechanisms that have been investigated. However further
studies (Collins and Stewart (1971), Collins and Hawking (1973), Barrow and
Matzner (1977)) indicate that that the age and expansion rate of the Universe
place such severe constraints on the effects of such processes that gravitational
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instabilities would have been likely to predominate, causing the growth of any
initial anisotropies. Chaotic cosmology therefore appears to be untenable:

Chaos then implies chaos now.

Consider then the alternative view that the Big Bang was ordered. One
might reasonably hope that such order would be found to have its origins in the
laws of physics rather than be a manifestation of initial conditions imposed at
the will of a Creator. But in any case, the principal problem for 'quiescent
cosmology' (Barrow (1978)) is to show that an appropriately ordered Big Bang
necessarily evolves to a spatially isotropic Universe. That is:

Order then implies order now.

This problem breaks naturally into two parts. First, to determine a suitable
condition of order at the Big Bang. And second, to establish the uniqueness of
the evolution despite the singular nature of the initial state. The problem, as a
whole, was given a mathematically clear formulation in the context of classical
general relativity by Tod (1987). His fundamental proposal was that the Big
Bang be assumed to be a conformal singularity, meaning that it could be
conformally transformed into a smooth spacelike hypersurface. With regard
to the condition of order at the Big Bang, he adopted Penrose's Weyl Curvature
Hypothesis (Penrose (1977), (1981), (1986)) that the Weyl tensor tends to zero at
the Big Bang. This Hypothesis is motivated by a speculation that the Weyl tensor
may be related to an, as yet undefined, gravitational entropy which is initially
zero, but increases as gravitational instabilities, and ultimately gravitational
collapse, come into effect. This in turn is motivated firstly by calculations which
show that singularities resulting from gravitational collapse have a tendency
towards high anisotropy, and correspondingly large Weyl tensor, and secondly
by a need (Penrose (1979)) to account for the temporal assymmetry of the
Universe. But to return to the problem in hand, Tod imposed a final condition
that the Universe be assumed to be filled by an isentropic perfect fluid. His
conjecture then was that, subject to the stated conditions, the Universe is
necessarily spatially isotropic and therefore Robertson-Walker.

The study of conformal singularities arose out of a well-known series



of papers on singularities in general relativity by Lifschitz and co-workers,
beginning with Lifschitz and Khalatnikov (1963) and culminating with Belinski
et al. (1982). Unfortunately, in view of their use of power series approximations,
not all their conclusions can be considered well-founded. Nonetheless, their
work did indicate that, in modern terminology, the induced conformal 3-metric
on the initial hypersurface representing a conformal singularity determines the
4-dimensional Riemann tensor there. Subsequent calculations of Goode and
Wainwright (1985) (who employed the term ‘isotropic singularity') enabled Tod
(1987) to conclude that the Weyl Curvature Hypothesis implies that the conformal
3-metric on the initial hypersurface is of constant curvature, and therefore
isotropic and likely to give rise to a Robertson-Walker Universe. Certainly any
constant curvature 3-metric can arise as the initial conformal 3-metric for some
Robertson-Walker model. The outstanding problem was therefore to show that
the initial conformal 3-metric constitutes sufficient initial data to uniquely
determine the subsequent evolution. This has now been carried out for the
special case y=4/3 corresponding to a Universe filled by radiation or a highly
relativistic fluid. (The adiabatic index Y, in general a function of the fluid
density p, determines the pressure p of the fluid accordingto p=(y-1)p.)

Theorem (Newman (1991). A y= 4/3 perfect fluid space-time which evolves
from a spacelike conformal singularity subject to the Weyl Curvature
Hypothesis is necessarily Robertson-Walker near the singularity. W

This result gives an affirmative resolution of the Tod conjecture in the case
v=4/3. It is likely that a routine extension of the techniques involved in the
proof may permit more general equations of state, although asymptotic
conditions on 7y for large matter density p will undoubtedly be necessary.
One technical point should be made. Previous authors, and Goode
and Wainwright (1985) in particular, permitted or even implicitly demanded
the conformal factor in the description of the conformal singularity to be
non-differentiable at the initial hypersurface representing the singularity.
This gave rise to considerable compliéations. For present purposes however,
the conformal factor is assumed, along with the conformal manifold and the
conformal metric, to be C*°. This has the curious, but desirable consequence
that, as the singularity is épproached, vy must tend to the value 4/3 appropriate
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to a hot Big Bang. For mathematical simplicity the theorem assumes that
v has what is therefore its only possible constant value in this context,
namely y=4/3.

Although the proof of the theorem is long, the underlying method is
sufficiently straightforward to be outlined here. The first task is to fix the
conformal factor. It can be shown (Scott (1988)) that the velocity of the fluid is
necessarily irrotational in both the physical and conformal pictures, and meets
the initial hypersurface orthogonally in the latter. One can therefore demand
that the conformal factor be such that its level surfaces are orthogonal to the
fluid velocity. The conservation equations then suggest a natural scaling in
relation to the fluid density p . Following Goode and Wainwright (1985) one
now shows that, within the conformal picture, the magnetic part of the Weyl
tensor must vanish at the initial hypersurface, whilst the electic part is
proportional to the trace-free part of the Ricci tensor of the conformal 3-metric
thereon. The Weyl Curvature Hypothesis and the contracted Bianchi identities
are now sufficient to show that this conformal 3-metric is of constant curvature.

The irrotationality of the fluid velocity suggests the use of comoving
coordinates. However it is well known that, at least for the vacuum Einstein
equations, hyperbolicity and the consequent well-posedness of the Cauchy
problem are most easily demonstrated in harmonic coordinates. Nonetheless,
comoving coordinates turn out to be the better choice. Independent variables are
now selected in such a manner as to obtain from the conformally transformed
Einstein equations for the fluid a first order quasi-linear symmetric hyperbolic
system of evolution equations of the form:

A%u) du = Ai(u) dju + (B(w) + t-1C(u)u.
u=u at t=0

Here u is a 63-component column vector, A%u), ..., A3(u), B(u) and C(u)
are 63 x 63 matrices, analyticin u, with A%u), ..., A3(u) symmetric

(hence the 'symmetry’ of the system) and A%u) positive definite (hence the
‘hyperbolicity’). Also (A%u))~!C(u) has no positive integer eigenvalues.

The quantity t is the conformal factor which also serves as a time coordinate.
The spatial coordinates are labelled by i =1, 2, 3. The function u on the initial
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hypersurface is fixed by the conformal 3-metric there together with the gauge
conditions. One can show that the system not only follows from, but is
equivalent to the original conformally transformed Einstein equations from
which it was derived. However this is not relevant to the Tod conjecture for
which it would suffice to work with any of a number of smaller systems that
are not known to posess this property.

In order to complete the proof, it remains to establish a uniqueness
theorem for solutions to equations of the above form. Somewhat surprisingly,
no suitable theorem was to be found in the literature, so a special study had
to be undertaken. The property that (A%u))~!C(u) has no positive integer
eigenvalues plays a fundamental role. To see this, suppose for simplicity that
one wishes to establish uniqueness only amongst analytic solutions. For any
such solution u, the above equation may be differentiated n -1 times and
restricted to t =0 to yield

(Id - n~Y(A%0)) -1C(0)) 9",gu = termsin dPl_qu and dPl_odu
1=1,2,3; 0<psn-1; n21
u=u at t=0

For each positive integer n one can thus, by induction, express d,_gu in
terms of aiP 1.1, 0<spsn-1,i=1,2, 3. It follows that u, being analytic,
is uniquely determined on a neighbourhood of the initial hypersurface t =0
in terms of u and its derivatives. One can in fact not only dispense with
analyticity, but work at finite levels of differentiability by means of fixed point
techniques. Even at the C™ level some subtlety is required because the
coefficient t-! in the basic system of equations tends to resist contraction
mappings. The difficulties can be overcome however to yield the required
uniqueness theorem and hence a proof of the Tod conjecture in the case y=4/3.
An outstanding problem is to show that the conformal 3-metric on the
initial hypersurface constitutes a complete set of initial data, even without the
imposition of the Weyl Curvature Hypothesis. To have obtained a symmetric
hyperbolic system equivalent to the original conformally transformed Einstein
equations is a significant advance. A suitable existence theorem for this system
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would complete the result.

The work described here concerning perfect fluid space-times in the
vicinity of conformal singularities in many ways parallels work of Friedrich
(1985) concerning vacuum space-times in the vicinity of conformal infinity.
Symmetric hyperbolic systems form the key ingredient in both instances,
although in the case of conformal infinity one does not have to contend with
a t-1 forcing term. Perhaps a unified treatment may be possible. But in
any case it is a remarkable feature of the Einstein equations, with or without
matter, that the fundamental property of hyperbolicity can survive conformal
transformations, even where the conformal factor passes through zero or
infinity. Whilst the mathematics of this phenomenon is part way to being
understood, the underlying physical significance remains mysterious.
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