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Twistor diagrams in higher dimensions

I x_in higher di 10n
The observaton that integration of homogeneous twistor-differential forms (twistor diagrams) over

chosen Z-cycles [C], such as for example
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result in expressions which make sense in any dimension (e.g.
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raises the natural question:

Are there higher (or in some cases also lower) dimensional forms and cycles (contours) which
reproduce those same results?

In pursuit of this question — which will also have interesting implications for the inversion of
differential operators corresponding to massless propagators — we start with the following procedure

of “inflating” a particular contour along the internal line of a twistor diagram on €rz x Cn*y <
P
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The contour G, , and the differential form ), can obviously be constructed for any n > p (and indecd
also for n = p). In the following commuting embeddings we regard C, ; for m 2 n as the “inflated”

version of the contour C;, 5
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To get contours B, for higher dimensional box diagrams we apply this procedure twice, first to the

base and then to the fibres over this “inflated” base of a standard contour By, for the box diagram in

¢4Z X ¢4'w X (1:4)( X ¢4.Y .

o -
o-

L] [}
C H
W Y 4 4 4 AB EF AB EF
\ - o = DZD'WDXDY e
N ¢ ? 00 YABWWWWEFYYY * "7i 11771711
z X T T T O I I CD GH GH CD
A B E F ZZZZCD XXXXGH = a =c
\ 1 | 1
v (8)
If the ingoing and outgoing states are not too far apart
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By can be described as a fibre bundle
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where T is the projection onto the factor €4x x €4*y . The base space is constructed to be a C, 5 as

in (5) using bases as in (4)
l ! R T «
faly..a®), (BB, )= [E.I;‘.a.a“], (G.H.By.B 15 | =8, for max{i,j)>2;
| | H | i
b (11)

with the additional diagonalising property
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This allows us to fix the fibres Fy O'(.y) as standard Cy4's (~ (S1)8) by choices of bases as in (4)
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we now construct a contour B,¢— B in this enlarged space. We first define an “inflated” base
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If (9) holds exactly one has
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and a restriction to extensions which are orthonormal in the sense
Yl i 31 T !
l=8j=l , where za =zp for zeC;i,j=3,..,n+4,
7, 5, ! !

defines F, O'(-Y) uniquely. The general case with (9) follows from continuity.

Thus we get a contour B, over which we can integrate the forms
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and after integrating out (S)4 around the exterior poles X, EXi, F,Xi, Y;Gi, Y;Hi =0 we are left
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where A, =ap(2+i),i=12, are the roots of
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The significance of this result lies in the fact that the left hand side of (20) can be written as
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1. () is a fixed (hyper-)planc of complex (co-)dimension 2, generalising the infinity twistor.
Thus if in a general scattering amplitude F contains a timelike propagator
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which in special examples can again be shown to be essentially independent of dimension.

Scatteri liud

As an example we consider the massless Yukawa process
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If we take special twistor representations for the exterior fields
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where “” is the usual Penrose correspondence with respect to some fixed CP3(*) C CP3+n(*),
then
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and we can give the scattering amplitude in terms of higher dimensional single box twistor diagrams
as
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where on the right &, , A, are taken to be functions of
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Thus we get an expression which is independent of the dimension n. It can be taken to define the left

hand side in the case n = 0 which is of the form 0/0. For a twistor diagrammatic representation we
take n=1:

(32)

Remarks;

1. There are also contours for the higher dimensional double box which allow representations of the
right hand side of (20) involving space-like propagators and thus lead for example to a (dimension
independent?) regularisation of Mgller scattering.

2. It seems that a more invariant description of the contour B, can be given as a bundle over the

Grassmannian Gr,(C2+") with fibre By,
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