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Conformal Singularities
and the Weyl Curvature Hypothesis

Richard P.A.C. Newman*

Abstract A conjecture of K.P. Tod relating Penrose's

Weyl Curvature Hypothesis and the isotropy of the Universe
has recently been proved. Background material and the
method of proof are discussed.

The large scale structure of the Universe is well-known to exhibit a
high degree of spatial isotropy. Claims have been made that this may be due
to quantum processes occurring at times subsequent to the Big Bang, such as
inflation and dissipative particle interactions. According to Penrose (1977)
however, one should seek a more fundamental explanation in terms of entropy
considerations at the Big Bang itself. This view has recently been provided
mathematical substantiation by a development in classical general relativity.

Although Penrose is concerned to apply a condition of zero entropy at
the Big Bang, it is worthwhile to first recall a contrary view of Misner (1968)
that the Big Bang was maximally disordered. One might seek to motivate this
philosophy of 'chaotic cosmology' on the grounds that physical laws based on
field equations are inherently inapplicable at singularities, and that the Big
Bang, being singular, cannot therefore be constrained by such laws. As will be
seen, this view may be naive.. But whatever its motivation, the major problem
for chaotic cosmology is to explain how the high degree of large-scale isotropy
of the present-day Universe could have evolved from an chaotic Big Bang.
Neutrino-induced viscosity (Matzner and Misner (1972)) and curvature-induced
creation of particle pairs (Zel'dovich (1972)) are just two of the possible
isotropization mechanisms that have been investigated. However further
studies (Collins and Stewart (1971), Collins and Hawking (1973), Barrow and
Matzner (1977)) indicate that that the age and expansion rate of the Universe
place such severe constraints on the effects of such processes that gravitational

*Lloyds of London 1991 Tercentenary Research Fellow.
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instabilities would have been likely to predominate, causing the growth of any
initial anisotropies. Chaotic cosmology therefore appears to be untenable:

Chaos then implies chaos now.

Consider then the alternative view that the Big Bang was ordered. One
might reasonably hope that such order would be found to have its origins in the
laws of physics rather than be a manifestation of initial conditions imposed at
the will of a Creator. But in any case, the principal problem for 'quiescent
cosmology' (Barrow (1978)) is to show that an appropriately ordered Big Bang
necessarily evolves to a spatially isotropic Universe. That is:

Order then implies order now.

This problem breaks naturally into two parts. First, to determine a suitable
condition of order at the Big Bang. And second, to establish the uniqueness of
the evolution despite the singular nature of the initial state. The problem, as a
whole, was given a mathematically clear formulation in the context of classical
general relativity by Tod (1987). His fundamental proposal was that the Big
Bang be assumed to be a conformal singularity, meaning that it could be
conformally transformed into a smooth spacelike hypersurface. With regard
to the condition of order at the Big Bang, he adopted Penrose's Weyl Curvature
Hypothesis (Penrose (1977), (1981), (1986)) that the Weyl tensor tends to zero at
the Big Bang. This Hypothesis is motivated by a speculation that the Weyl tensor
may be related to an, as yet undefined, gravitational entropy which is initially
zero, but increases as gravitational instabilities, and ultimately gravitational
collapse, come into effect. This in turn is motivated firstly by calculations which
show that singularities resulting from gravitational collapse have a tendency
towards high anisotropy, and correspondingly large Weyl tensor, and secondly
by a need (Penrose (1979)) to account for the temporal assymmetry of the
Universe. But to return to the problem in hand, Tod imposed a final condition
that the Universe be assumed to be filled by an isentropic perfect fluid. His
conjecture then was that, subject to the stated conditions, the Universe is
necessarily spatially isotropic and therefore Robertson-Walker.

The study of conformal singularities arose out of a well-known series



of papers on singularities in general relativity by Lifschitz and co-workers,
beginning with Lifschitz and Khalatnikov (1963) and culminating with Belinski
et al. (1982). Unfortunately, in view of their use of power series approximations,
not all their conclusions can be considered well-founded. Nonetheless, their
work did indicate that, in modern terminology, the induced conformal 3-metric
on the initial hypersurface representing a conformal singularity determines the
4-dimensional Riemann tensor there. Subsequent calculations of Goode and
Wainwright (1985) (who employed the term ‘isotropic singularity') enabled Tod
(1987) to conclude that the Weyl Curvature Hypothesis implies that the conformal
3-metric on the initial hypersurface is of constant curvature, and therefore
isotropic and likely to give rise to a Robertson-Walker Universe. Certainly any
constant curvature 3-metric can arise as the initial conformal 3-metric for some
Robertson-Walker model. The outstanding problem was therefore to show that
the initial conformal 3-metric constitutes sufficient initial data to uniquely
determine the subsequent evolution. This has now been carried out for the
special case y=4/3 corresponding to a Universe filled by radiation or a highly
relativistic fluid. (The adiabatic index Y, in general a function of the fluid
density p, determines the pressure p of the fluid accordingto p=(y-1)p.)

Theorem (Newman (1991). A y= 4/3 perfect fluid space-time which evolves
from a spacelike conformal singularity subject to the Weyl Curvature
Hypothesis is necessarily Robertson-Walker near the singularity. W

This result gives an affirmative resolution of the Tod conjecture in the case
v=4/3. It is likely that a routine extension of the techniques involved in the
proof may permit more general equations of state, although asymptotic
conditions on 7y for large matter density p will undoubtedly be necessary.
One technical point should be made. Previous authors, and Goode
and Wainwright (1985) in particular, permitted or even implicitly demanded
the conformal factor in the description of the conformal singularity to be
non-differentiable at the initial hypersurface representing the singularity.
This gave rise to considerable compliéations. For present purposes however,
the conformal factor is assumed, along with the conformal manifold and the
conformal metric, to be C*°. This has the curious, but desirable consequence
that, as the singularity is épproached, vy must tend to the value 4/3 appropriate
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to a hot Big Bang. For mathematical simplicity the theorem assumes that
v has what is therefore its only possible constant value in this context,
namely y=4/3.

Although the proof of the theorem is long, the underlying method is
sufficiently straightforward to be outlined here. The first task is to fix the
conformal factor. It can be shown (Scott (1988)) that the velocity of the fluid is
necessarily irrotational in both the physical and conformal pictures, and meets
the initial hypersurface orthogonally in the latter. One can therefore demand
that the conformal factor be such that its level surfaces are orthogonal to the
fluid velocity. The conservation equations then suggest a natural scaling in
relation to the fluid density p . Following Goode and Wainwright (1985) one
now shows that, within the conformal picture, the magnetic part of the Weyl
tensor must vanish at the initial hypersurface, whilst the electic part is
proportional to the trace-free part of the Ricci tensor of the conformal 3-metric
thereon. The Weyl Curvature Hypothesis and the contracted Bianchi identities
are now sufficient to show that this conformal 3-metric is of constant curvature.

The irrotationality of the fluid velocity suggests the use of comoving
coordinates. However it is well known that, at least for the vacuum Einstein
equations, hyperbolicity and the consequent well-posedness of the Cauchy
problem are most easily demonstrated in harmonic coordinates. Nonetheless,
comoving coordinates turn out to be the better choice. Independent variables are
now selected in such a manner as to obtain from the conformally transformed
Einstein equations for the fluid a first order quasi-linear symmetric hyperbolic
system of evolution equations of the form:

A%u) du = Ai(u) dju + (B(w) + t-1C(u)u.
u=u at t=0

Here u is a 63-component column vector, A%u), ..., A3(u), B(u) and C(u)
are 63 x 63 matrices, analyticin u, with A%u), ..., A3(u) symmetric

(hence the 'symmetry’ of the system) and A%u) positive definite (hence the
‘hyperbolicity’). Also (A%u))~!C(u) has no positive integer eigenvalues.

The quantity t is the conformal factor which also serves as a time coordinate.
The spatial coordinates are labelled by i =1, 2, 3. The function u on the initial
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hypersurface is fixed by the conformal 3-metric there together with the gauge
conditions. One can show that the system not only follows from, but is
equivalent to the original conformally transformed Einstein equations from
which it was derived. However this is not relevant to the Tod conjecture for
which it would suffice to work with any of a number of smaller systems that
are not known to posess this property.

In order to complete the proof, it remains to establish a uniqueness
theorem for solutions to equations of the above form. Somewhat surprisingly,
no suitable theorem was to be found in the literature, so a special study had
to be undertaken. The property that (A%u))~!C(u) has no positive integer
eigenvalues plays a fundamental role. To see this, suppose for simplicity that
one wishes to establish uniqueness only amongst analytic solutions. For any
such solution u, the above equation may be differentiated n -1 times and
restricted to t =0 to yield

(Id - n~Y(A%0)) -1C(0)) 9",gu = termsin dPl_qu and dPl_odu
1=1,2,3; 0<psn-1; n21
u=u at t=0

For each positive integer n one can thus, by induction, express d,_gu in
terms of aiP 1.1, 0<spsn-1,i=1,2, 3. It follows that u, being analytic,
is uniquely determined on a neighbourhood of the initial hypersurface t =0
in terms of u and its derivatives. One can in fact not only dispense with
analyticity, but work at finite levels of differentiability by means of fixed point
techniques. Even at the C™ level some subtlety is required because the
coefficient t-! in the basic system of equations tends to resist contraction
mappings. The difficulties can be overcome however to yield the required
uniqueness theorem and hence a proof of the Tod conjecture in the case y=4/3.
An outstanding problem is to show that the conformal 3-metric on the
initial hypersurface constitutes a complete set of initial data, even without the
imposition of the Weyl Curvature Hypothesis. To have obtained a symmetric
hyperbolic system equivalent to the original conformally transformed Einstein
equations is a significant advance. A suitable existence theorem for this system
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would complete the result.

The work described here concerning perfect fluid space-times in the
vicinity of conformal singularities in many ways parallels work of Friedrich
(1985) concerning vacuum space-times in the vicinity of conformal infinity.
Symmetric hyperbolic systems form the key ingredient in both instances,
although in the case of conformal infinity one does not have to contend with
a t-1 forcing term. Perhaps a unified treatment may be possible. But in
any case it is a remarkable feature of the Einstein equations, with or without
matter, that the fundamental property of hyperbolicity can survive conformal
transformations, even where the conformal factor passes through zero or
infinity. Whilst the mathematics of this phenomenon is part way to being
understood, the underlying physical significance remains mysterious.
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Twistor theory and integrability

This note consists mostly of certain speculative and conjectural comments
that I gave or would have liked to give in my 5 minute contribution to the
special twistor workshop to celebrate the birthday of the founder of many of
these ideas.

In this note I wish to emphasize that the recently established deep links
between twistor theory and integrable systems should lead to new techniques
and results in twistor theory as well as unification and hopefully new results
in the theory of integrable systems.

In various articles it has emerged that many/most integrable systems are
symmetry reductions of the self-dual Yang-Mills equations with a small num-
ber of exceptions, most notable of which is the KP hierarchy. Furthermore,
much of the theory and structure of these equations can be understood in a
reasonably direct way as various features of the symmetry reductions of the
Ward correspondence for the self-dual Yang-Mills equations. See Mason &
Sparling and references therein.

As far as the equations are concerned, it appears that we can classify most
integrable systems as reductions from self-dual Yang-Mills in 4-dimensions
by choice of:

a) a gauge group,

b) a symmetry group (with a possible discrete component),

c) a normal form for the various constants of integration that arise in the
reduced equation.

For example, the Drinfeld Sokolov systems can all be understood in this way
as can various other large classes of integrable systems.

The standard theory of the equations consists of such constructions as
the inverse scattering transform, actions of loop groups and realizations of
the P.D.E.s as flows on grassmanians. These can be understood as various
ansatze and normal forms for the patching data of the holomorphic vector
bundles on twistor space with the appropriate symmetry properties that arise
from the corresponding symmetry reductions of the Ward transform for the
self-dual Yang-Mills equations.

However, these ideas from the theory of integrable systems are in many
cases refinements of twistor ideas, and in others are completely new in twistor
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theory. There is therefore the possibility of methods from the theory of inte-
grable systems being used to solve problems in twistor theory. The following
conjectures and connections include examples where twistor theory may ben-
efit from this interaction.

1) Inverse scattering. The inverse scattering transform provides a paramet-
rization of the solution space of integrable P.D.E.s. The parameters can be
used to build patching data for the Ward bundle on twistor space directly.
For example for the attractive nonlinear Schrodinger equation we get the
solution space identified with: Map(S' — D) x I, S*¥{C* x D} where D is
the unit disc in the complex plane C, C* are the non-zero comlex numbers, II
is the disjoint union and S¥ is the symmetrized cartesian product. The first
factor are solutions that one would expect from linearizing the equations (for
which they are the Fourier transform) but the second factor are the soliton
solutions which do not have a linear analogue.

One would expect this pattern to be generic for solutions of the self-dual
Yang-Mills equations in indefinite signature. So one would expect for exam-
ple that on the compactified 4-dimensional Minkowski space with signature
(2,2) the solution space of the SU(n) self-dual Yang-Mills equations is a
Cartesian product of maps from RP? to unit determinant Hermitean n x n
matrices with a soliton type sector, which would presumably be the (2,2)
analogues of instantons. It is perhaps worth mentioning that the first factor
can be understood as a nonlinear generalization of the Radon transform. A
similar picture should hold for the symmetry reductions to equations in 2+ 1
dimensions and other 1 + 1 dimensional systems.

2) The inverse scattering transform in 241 dimensions such as for the KP
hierarchy has features that distinguish it clearly {rom existing twistor corre-
spondences so that there seems little real hope of incorporating it into the
above framework. Nevertheless, it is a natural generalization of the frame-
work for the KdV equations and leads to a coherent inverse scattering trans-
form based on a non-local Riemann-Hilbert transform. One may hope, then,
that the transform can be articulated geometrically so that it leads to some
new category of twistor constructions.

It is perhaps worth remarking that the pseudo-differential operators that
play such a prominent role in the KP equations also arose naturally in one of
RP’s earlier discussions of the googly problem—the patching operation was
represented by a pseudo-differential operator representable by integration
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against a kernel just as in the KP inverse scattering problem.

Another point is that the inverse scattering transform does work for many
other field equations in higher dimensions but is no longer implementable by
linear procedures and hence does not lead to practical solution generation
methods. It may nevertheless lead to a workable framework for understand-
ing general relativity using spin 3/2 fields and RP’s elemental states based
on asymptotic twistors (see the previous TN).

3) It is possible to use the Ward correspondence to understand the connec-
tions between the KdV type equations and the 2-dimensional quantum field
theory of free Fermions, developed by the Japanese school and described in
Segal & Wilson and Witten. Solutions (at least those that are reflectionless)
of the KdV equations are given by amplitudes associated to flows acting on
certain special vectors in the free Fermion Fock space. The link is that the
free Fermions are the holomorphic sections of the Ward bundle on twistor
space restricted to a complex projective line, and the quantum field theoretic
amplitude in question is the 2-point function that gives rise to the Greens
function for the J-operator. Finding the Greens function is equivalent to
trivializing the vector bundle on the line which is the key step in obtaining
the self-dual Yang-Mills field in terms of the bundle.

One may ask the question then of whether its possible to realize other
more complicated twistor constructions such as the nonlinear graviton con-
struction as a more complicated, perhaps interacting 2-dimensional quantum
field theory. In particular this might explain the remarkable link discovered
by Ooguri & Vafa between N = 2 string theory and the self-dual Einstein
equations.

4) There is much scope for using ideas from the quantum inverse scattering
transform to understand how to use twistor methods in the context of inte-
grable quantum field theory. In particular the Russian school’s introduction
of the R-matrix to describe the Poisson bracket structure should pass over
directly to give the Poisson bracket relations for the twistor patching data.
Other workers have managed to show that the inverse scattering transform
survives quantization so that one can hope to quantize on twistor space and
then transform the results to obtain a quantum field theory on space-time.
The existing theory is still in need of further insights that twistor theory may
be able to provide.
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5) Witten has attempted a unification of the theory of integrable statistical
mechanical models using Chern-Simons quantum field theory. This produces
R-matrices, and is sufficient for understanding knot polynomials. Unfortu-
nately it does not provide the dependence of the R-matrices on the spectral
parameter that is so crucial to integrability. So it is not possible to regard this
as a satisfactory understanding of integrable statistical mechanics. One may
conjecture that by studying a quantum field theory of self-dual Yang-Mills
reduced to 3-dimensions this gap would be remedied.

It is perhaps also worth drawing attention to the Atiyah-Murray conjec-
ture also in this context (see their article in the last TN).

L.J.Mason
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The 3-Wave Interaction from the Self-dual Yang Mills Equations

There is a family of completely integrable systems called ‘the n-wave
interaction' (see eg Ablowitz and Segur 1881). According to current twistor
dogma, these equations should be reductions of the self-dual Yang-Mills
equations. While trying to do something different, I found a way of getting
them by this route. I also found, though somewhat later, that Chakravarty
and Ablowitz (19390) had a slightly different route with similar end-points.

The starting point is the self-dual Yang-Mills equations with 2 null
symmetries. These are equivalent to the commutation relation
{D,,Dz1 =0 )

where D,
D2

b, - A, + (B,
0z — Az + (B, 2)

[

the A, and B, are nxn complex matrices, functions of x' and x= only, and {
is a complex constant,

Substituting (2) into (1) and equating separate powers of { to zero gives 3
equations., The 0({*) term is Just

[B].Bz] = 0 : (3)
Mason and Singer (1991; see also Mason 1991) solve this by taking the B, to
be nilpotent and arrive at the n-th generalised KdV equation. The opposite
extreme, which I shall take, is to suppose that the B, are diagonalisable
by the Yang-Mills gauge freedom, which is
By + G'B,G ; A, #+ GV (A,G - 2,5, 4)
where G 1s an nxn complex matrix depending on x' and x=.
Now the O0() term in (1) is
b‘Bz - b281 + AzB] + BzA] - A]Bz - B]Ag =0 (5)
The diagonal entries in (5) imply that there is a 'potential’ for the B,:
By = 2,C )
while the off-diagonal entries imply that the off-diagonal entries of the
A, are proportional in a way that I shall write out explicitly below.
Before that, we consider the 0(1) term in (1) which is
bQA] - b‘Az + A|A2 - AzA] = O (7)
The diagonal entries in (7) imply that the diagonal entries of the A, have

potentials in a way analogous to (6). A gauge transformation (4) with

diagonal G preserves the disgonality of the B, and can be chosen to remove
the diagonal entries of the A,.
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To summarise the situation at this point in the argument:

(1) the B, are diagonal and derived from a potential C as in (6);
(11) the A, are purely off-diagonal and can be expressed in terms of C and
each other using (5);
(11i) finally (7) imposes some differential equations.

At what is essentially this point, Chakravarty and Ablowitz (1990) take the
matrices B, to be constant and arrive at the n-wave interaction. This is a
specialisation in that the B's can't in general be made constant by a gauge
transformation (4), but it leads to the same equations eventually as we
shall see.

Now it is necessary to resort to taking components so for simplicity I will
restrict to 3x3 matrices. Set

B, = diag(a,B,y) = 2,C ; B2 = diag(\,p,Vv) = d2C (8)
and a -8 = 0,P B~y =2,Q Y - a o,R (9)
A= op o= 0P B = Vv =02Q v - A= d5R
so that
P+Q+R=0. a9

We will eventually switch to using two of P,Q,R as independent variables.

With the choices (8) for the B,, we can solve (5) for the A, in terms of
another off-diagonal matrix E. Set

A, = (a,,) Ax = (b,,) E = (&)

then (5) implies

a2

(a-ﬂ)e)z 1 b|2 = (X“p)ﬁ,z 11
and the 5 equations obtained from this by the obvious permutations.

Finally, we substitute <(i1) into (7) to obtain differential equations on E.
These differential equations can all be written with the aid of the Poisson
bracket in (x',x?), The typical one, from which the other 5 follow by
permutations, is

{E12,R} = E15Eaz(P,Q (12>
We cen break the symmetry between P,Q,R by adopting P and Q as new
independent coordinates. Write ‘dot' and ‘prime’ for differentistion w.r.t

P and Q respectively and set

E =

o E O
com
(TR IS

then (12) becomes the system
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F' = -vwW U= GH (13
. 6 o= W . V,= -FH
H-H = -uv W- W= FG

which is equivalent to the 3-wave interaction.

The further reduction 'dot = minus prime‘' leads, after some manipulating of
constants, to the integrable Hamiltonian

h = pi1p29s + 9:92Pa
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Twistor diagrams in higher dimensions

I x_in higher di 10n
The observaton that integration of homogeneous twistor-differential forms (twistor diagrams) over

chosen Z-cycles [C], such as for example

& D ’f*f_l AB AB
| g1i/10 o))
J cD CD DC

=19 (1)

‘<« C lf‘?
CxC o c,.cC, .JI\ I|3 J (Cz)
. \CD

result in expressions which make sense in any dimension (e.g.

| | n(*)
A,B,C,DeC , n22) (2)
| |

raises the natural question:

Are there higher (or in some cases also lower) dimensional forms and cycles (contours) which
reproduce those same results?

In pursuit of this question — which will also have interesting implications for the inversion of
differential operators corresponding to massless propagators — we start with the following procedure

of “inflating” a particular contour along the internal line of a twistor diagram on €rz x Cn*y <
P

| i

p B
A\ (n-p-n!D"ZD'W _
n-p-1 : «— e, ar(WJn—p\;/ \7 ! 3)
R I
, Z . z z\z) g B,
a o
I S ) ’
T i a ..«
D"'Z=dZ ..dZ/a! , H— #0 , p<n
B, B,
We extend the exterior parameters to bases
i : : D« n al i .« .
{a,...,a"},[Bl,...,Bn]C(QZ),(Iw with |=5j for max (i,j} >p;
| { p
i

with their duals
! I ! n n n n* n, s
(o.....o(=B,))cC,(=C,), lBl,....B (=u‘")}C¢w (=(C)")
[ [

so that



i na' ! ! L i
Z=L |l a=Xz'a, , W=ZIf=2Zwf 4)
=17z ! ! B | ! |
Integration of w, over the standard cycle [C, ;] = [(S1)?P*1 x §2+-2p-1] with
2l = ecw', w.=eew', jsp;
1.2p+l 2n-2p~1 ((zl Zn) !
S = g ooy » _z i9 ._.= . ) 5
(8) x | (W, seees g ) w =2 ,Zz’zJ 1,j>p; (5)
S e TP T ¢,¢,,v,;€[0,2r], econst << 1
gives
-1
Javper (Y
[o,=@x) L : (6)
c B, - B,

ap

The contour G, , and the differential form ), can obviously be constructed for any n > p (and indecd
also for n = p). In the following commuting embeddings we regard C, ; for m 2 n as the “inflated”

version of the contour C;, 5

Cap < o Cm-p

[‘ f )

C"xc <, c"x¢™
To get contours B, for higher dimensional box diagrams we apply this procedure twice, first to the

base and then to the fibres over this “inflated” base of a standard contour By, for the box diagram in

¢4Z X ¢4'w X (1:4)( X ¢4.Y .

o -
o-

L] [}
C H
W Y 4 4 4 AB EF AB EF
\ - o = DZD'WDXDY e
N ¢ ? 00 YABWWWWEFYYY * "7i 11771711
z X T T T O I I CD GH GH CD
A B E F ZZZZCD XXXXGH = a =c
\ 1 | 1
v (8)
If the ingoing and outgoing states are not too far apart
AB EF
tt [ ] i1 [}
TTO® T, T S T 9)

GH CD
By can be described as a fibre bundle
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s" ~ C,; ~ Fg—B,

4,3
l (10)

1.5 .3
mBg ~ Cup ~ (8) xS

where T is the projection onto the factor €4x x €4*y . The base space is constructed to be a C, 5 as

in (5) using bases as in (4)
l ! R T «
faly..a®), (BB, )= [E.I;‘.a.a“], (G.H.By.B 15 | =8, for max{i,j)>2;
| | H | i
b (11)

with the additional diagonalising property

ABa' AB

= ,,p(x)ﬁ for i,j > 2. a2

cDg, CD
(9) then implies that p1(3), f(4) = 1 and hence

ABX AB l

= 14020 foral (X, Y)e ngB, . a3

cDy ¢CD |

This allows us to fix the fibres Fy O'(.y) as standard Cy4's (~ (S1)8) by choices of bases as in (4)
[}

| T ¥
(v 7" ), (8,8, =(AB.Y. ) . (C.D.X,8,); =8 for max(ij)>3;
! { 5

: (14)
and thus By is completely defined.
Given the trivial embedding
¢z"¢ X‘Ixx‘fv — ¢4z+nx¢$n x¢;(+n ‘I?n (15)

we now construct a contour B,¢— B in this enlarged space. We first define an “inflated” base

7t B, ~ C4,n2 in the manner of (5) by extending the bases (11) subject to the same (extended)
L]

condition (12) where we can arrange p(>4) = 1. Then (13) continues to be satisfied for all (X,‘:’) €

7, Bp and, by exiensions of (14), we can equally define “inflated” fibres F, (5(.‘,) over K B, with
]

i
Foox.ny™ — F x, Y) ~Ciin3 ((X.\{)e n,B, & x, Bn) (16).

If (9) holds exactly one has



8 3l +4
II = (] vY .---.'Yn and
D GH | 1

< : : > AB - EF I ! arn
={+—=5+.56,..8
B3 B"*“ DX GHx ° n+d

and a restriction to extensions which are orthonormal in the sense
Yl i 31 T !
l=8j=l , where za =zp for zeC;i,j=3,..,n+4,
7, 5, ! !

defines F, O'(-Y) uniquely. The general case with (9) follows from continuity.

Thus we get a contour B, over which we can integrate the forms

! ! [ .
c D G H [(n _ P)' '] D4+nz D4+n W D4+nx D4+nY
w P = ! -p+l -
n-p n‘:P > Pnpar Plaewy Plwwwy By P vy o (18)
3 X [T) II(Y] Il(l] II(D (I
VA Z2Z\Z CD\X XX GH
A B E F
! 4 ] f
Integrating over the fibres F,, ()'('y) we get
' -1
‘ P P+l a_p4l
AB ABY EFYY
[o,,, =@ni )Msp!(n—p)![— ,—) [[',—,') (T) tif p*"xp*"y
B, cD CDX X XXGH

and after integrating out (S)4 around the exterior poles X, EXi, F,Xi, Y;Gi, Y;Hi =0 we are left
with

Cri)" M- 1ptn-p)a- Adx' Ady [Zu(k)x* -'HZx" P
P P i jyj[ku y“] [h y"]
3¢+ 2n
§'xS (2<i,jk,hsn+4d,p(>4)=1)
if n>0 20+15 0'pl(n-pt  _ (1—5)
=" @ri)™ = na! T KO =R RO -1 - 1

o oa+ﬂmf*
(19)
and one finds that

lgA /A
Tflmjz(*l)()np.p=flkz
(2ri) J e 0 1~ %2 independent of n 20! (20)

where A, =ap(2+i),i=12, are the roots of
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2 puee
A —(a+c—T—T)A+a =0. (21)
CDGH

The significance of this result lies in the fact that the left hand side of (20) can be written as

f[(B( 9,3y / ZXWY)" K| F DZDW DX DY

llo 15

(2xn

(22)
FWW
1

>< -
1
]
N —=>
N —w
X —m

YY
I
XCDGH

1. () is a fixed (hyper-)planc of complex (co-)dimension 2, generalising the infinity twistor.
Thus if in a general scattering amplitude F contains a timelike propagator

k) e (@K F=(ZX3,2,)  ZXWYF (23)
’ |
then integration by parts lcads to the expression
— f[('ikazax/ﬁwv)"" K|F . n>0 (24)
(2% i) B, L (]

which in special examples can again be shown to be essentially independent of dimension.

Scatteri liud

As an example we consider the massless Yukawa process

M4 f [d4k 1 d4k2d4k3d4k48(kx+ kytkqtky) 8—“‘3) xA(k4) X

25)
- 2 1 +,2 +,.2 A
5 (kD (k) ——5 87 (k%9 (k)8 (kD)0 <k1>]

V\\kz (k) +ky)

Pa By
If we take special twistor representations for the exterior fields
N T | wy 2wy
oo o 2N vawe w(1 )
z/ \z C D

S S 2!
R B 1 1

where “” is the usual Penrose correspondence with respect to some fixed CP3(*) C CP3+n(*),
then

— '_1,_. — SE AEW FWY
F=(ZXd,9,) " ZX WY F=(2X9,0,)" ZX (l I U i I] 27)
L = L = \zxcG/ \ZXDH
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and we can give the scattering amplitude in terms of higher dimensional single box twistor diagrams
as

-2 -1
AEWY BFW
1 ]'[(azax/WY)“_lK](l X l) (| | T) p*"zp*"wp*"xD**"yY
(2wi) L e zxcc) \zxpH
B (28)
This is in fact the same as
L [P0 2% 2.3 a1 D*"zZD*"wD*"xp*"Y
EcEE IR praec [(@8¢ 1 WY) K] AEWYBFWY
995 3.3, L Frreittd
| ZXCGZXDH
B, 29)
which can be calculated from (20)
i 8|c3'° alcalo Ig ll/lz 3 e lg l‘/ 12 30)
"Dy a0 a0 Mimhe  {ahar anai| MRy
c a o

where on the right &, , A, are taken to be functions of

AAAABBBBETETETETFEFTFTFEFF
. Z8 = ) @31)
CDGHCDGHCDGHTCDGH

Thus we get an expression which is independent of the dimension n. It can be taken to define the left

hand side in the case n = 0 which is of the form 0/0. For a twistor diagrammatic representation we
take n=1:

(32)

Remarks;

1. There are also contours for the higher dimensional double box which allow representations of the
right hand side of (20) involving space-like propagators and thus lead for example to a (dimension
independent?) regularisation of Mgller scattering.

2. It seems that a more invariant description of the contour B, can be given as a bundle over the

Grassmannian Gr,(C2+") with fibre By,

}'f&-—si— /""‘:“'("/L
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An inverse twistor function

We know from the exact sequence argument that, under very general condi-
tions, a zero-rest-mass field on complex Minkowski space can be generated
from a twistor function.! There are various ways of constructing the twistor
function explicitly. The first was found by Brian Bramson, George Sparling,
and Roger Penrose.? In this note, I shall describe a very simple construction
that extends Richard Ward’s treatment of the positive homogeneity case.?
It must be ‘known’, since it is really no more than a concrete version of the
exact sequence argument, but I have not been able to find it in print, so it
may not be ‘well-known’.

I shall deal only with the wave equation, leaving the general case as an
easy exercise. Let ¢(z*) be a holomorphic solution of O¢ = 0 on complex
Minkowski space and let 0#’, 4" be a constant spinor dyad, with o4.¢4’ = 1.

. ' #(z*)

P C 2
f(I ’ FA') OA,TAMB"KBI )
This function is defined on the primed-spinor bundle, less the zero sets of
0’74 and 14’7y, It is homogeneous of degree —2 in 74, and it generates ¢
in the sense that )

¢(.‘Ba) = - ff(.‘ta, 7I'Ac)7l'30d7rB'.

2mi
The only problem is that it does not descend to twistor space since it is
not constant along the vector fields 74’V 44+, which span the fibration of the
primed-spinor bundle over T. In fact,

A' ! ’
A:V _ T VAAI¢ _ l,A VAAa¢ OA VAA'¢
T Vaa f = FroCmn = B +—%

L - L foll Lt~ g 0~ Tpg

- Let us look for holomorphic functions go and ¢, on the complements in
the primed-spinor bundle of 04’74 = 0 and A'r4 = 0, respectively, such
that P

’ 0"V ’ LA’V '
T Vaago = ’B.—M(’b and 1V, 40, = B,—A“ﬁ-
o~ TRt " TR
Then f—go+g: will also generate ¢, and will be constant along the fibration,
and so will be a twistor function for ¢.
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The integrability conditions for the existence of go and g, are satisfied as
a consequence of the wave equation. In fact, if we can find a surface S; in
complex Minkowski space that intersects each a-plane in the domain of ¢ in
a single point, with the exception of the a-planes tangent to ¢4/, then we can
take |

a _ v tA'LBlVAAIqS dItAB'
91(1? ,WA') —/: (LC'WCl)z )

where y is the intersection point of S; with the a-plane through z tangent to
74 and the integral is along any path in this a-plane from z to y. With x4
fixed, the integrand is closed, so the choice of path is immaterial (under the
obvious topological conditions). We can similarly define go by first choosing
So to intersect the a-planes that are not tangent to o4s. (The requirements
on Sy and S; have been stated in a more restrictive form than is necessary:
all we need is that gy and g; should be defined when x4 lies in appropriate
neighbourhoods of 14 and o4/, respectively.)

One possibility is to take Sp to be a fixed a-plane parallel to 04/ and 5,
to be a fixed a-plane parallel to ¢4. Then by taking z to lie on S, we can
construct an explicit twistor function F as follows: let Z be an a-plane with
tangent spinor x4 such that oA'74 # 0 # +4'x 4 and put

¢(z) v 4oV garp dztB’
oA'x4nB'xg /:: (C'xee)? ’
where z is the intersection of Z with Sy and y is the intersection of Z with

S1.

Example. Let h be a holomorphic function of a single (unprimed) spinor
variable. Then ¢(z) = h(z44'14) is a solution of the wave equation. In this
case, the integral term in the definition of F vanishes, leaving

F(2)=

z
F(2)= 22
OA TALT T
where z is the intersection point of Z with Sy. If we take Sy to be the a-
plane through the origin tangent to o#', then z44' = —iw404'/0® x5, where

Z = (w4, 7). A simple application of Cauchy’s theorem verifies that

h(iwt /0B np/)
oC'moriD

F(wA,ﬂ'A') =

1 1
RCil™ Tps

1s indeed a twistor function for ¢.

Nl M Lo L-’Ur‘»uxw{
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Update on Higher Order Feynman Diagrams

I can now give a much improved analysis of the second-order f' integral
discussed in TN 31, based on new formulas for integrating the Feynman
propagator. This eliminates the guessing in that TN, but unfortunately
shows my gucss was wrong. | have to abandon the claim that the

ultra violct diveryent loop diagram ’

can bc derived immediately from the tree diagrams %/

However, the general line of analysis is still valid, and the new formulas
considerably extend the scope for higher-order calculations and take us
nearcr a transcription of gcncral Fcynman diagrams.

The basic idca is that for twistor diagram transiation we need to represent
AF as sandwiched between test fields, i.e. to consider

[ dvy d1x) Dplxmys =) daty) )

where ¢, 4»1 are unconstrained fields. It's very helpful to break this down
into the cases where the test fields @ are lmelike (ie. positive or
negative frequency) or spacelike Then in the timelike case it's sufficient to
consider

| Oy le-ys ) (2)
| A ——— ” N

where p. ¢, are in the past tube; r; s”in the future tube. This integral was
evaluated by fairly elementary methods in my thesis long ago (1975) but |
wasn't able then to see a twistor-diagram-like integral to represent it.
More recent work shows that one can in fact be given as

where the s-integral is a Barnes integral like this: /_g-

(The proof of this and other formulas are too involved for this brief note.)
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Now consider the spacelike case, for which it's sufficient again to consider
the cxpression (2), but now with p* r® in the past tubc and ¢, s'in the
future tube. In this case | was able in 1975 to give the twistor-diagram-
like integral

(%)

but wasn't able to prove it correct. This has now been done. (It's a pity |
didn't push my 1975 line of thought to this conclusion a long time ago.)

As a corollary, twistor diagrams for all first-order massless scattering
amplitudes can be deduced via appropriate spin-raising and the limit
m » 0.

The formulas can also be applied to evaluate the Feynman diagrams

Y K

etc. as discussed by mc in TN 29 and TMP, by mc and L JOD. in TN 30,
and used to verify an exact correspondence with twistor diagrams.

However, the payofl | want to describe here is how they can be applied to
the second-order ¢ diagram

i.e. to the calculation of
jdqt'\loj | . Av(x-d) O) |
[e—p)?] (e —s)* [y-4) 1 (y-r)?

where p, r"are in the past tube; g* s'in the future tube.

This is straightforward once we observe that

| Cot o p2a b))
T O 8 TUSIMANIES) 0P 4P  (x-s)(x-p)
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where the first term is manifestly timelike and the second term manifestly
spacelike. Considering these two parts separately, the formulas (3) and (4)
induce expressions for the two parts respectively. These expressions can in
turn be represented as inhomogeneous twistor diagrams, all agreeing with
the “"skeleton” picture. More precisely, this must be done for a Feynman
propagator with mass m, since we find that each part separately diverges
asm > 0, although the sum of the two parts is convergent in this limit. The
final result is that

\"..‘:-'

b e e

where although a mass m has to appear in the inhomogeneous boundaries
at infinity, the sum of the diagréms is actually independent of m.

The techniques employed here could certainly be applied to other Feynman
integrals. As an example, 1 have also computed an expression for the

remaining channel

for this diagram. It appears that this too can be represented by a twistor
diagram with the expected “skeleton”. However, in view of the fact that (3)
and (4) actually capture all the content of the Feynman propagator, it
should be possible to extend these techniques much further, at least to tree
diagrams.
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Finally there is the question of deriving the loop diagram from this resuit.
When we now sum over external states to make the loop, as described in
TN 31, the first term in (5) makes a contribution which is exactly cancelled
by the second and third terms. Thus

is for mally ‘J j i i

In my previous note I thought that these terms would cancel each other
but this now seems to be wrong. Instead, new analysis suggests that to
make sense of the divergent summation, further inhomogeneous
boundaries at infinity must be added, and that then we do obtain as

required,
é i/ %

Considerable work has been done by L.J. 0°'D. on this calculation, developing
ideas suggested in TN 32 about the essential role of inhomogeneity in
twistor diagrams.

Andrew Hodges








