A comment on the preceding article

In the preceding article, Linda Haslehurst and Roger Penrose derive the
twistor space of a self-dual type D vacuum metric. As they remark, their
solution is one of a class constructed by Tod and Ward from solutions of
Laplace’s equation in three variables, and by following through the analysis
in [1], one can find an explicit form of the metric by solving a linear splitting
problem.

Since the solution has two commuting Killing vectors, it also has a ‘Yang-
Mills’ twistor description [2]: the solution is encoded in a holomorphic vector
bundle over a one-dimensional non-Hausdorff Riemann surface and can be
recovered from its patching matrix P, a 2 x 2 matrix-valued holomorphic
function of a single complex variable w [3,4]. The purpose of this note is
to describe the connection between the two twistor constructions. The ex-
ample 1s of interest in the context of the Yang-Mills construction because
it illustrates what seems to be a general property of type D solutions, that
their patching matrices are rational functions of a particularly simple form.
Thomas von Schroeter has verified this by direct calculation in the case of
the Lorentzian type D metrics, which are known explicitly, but the geometric
reason for the special rational form is not yet clear. This self-dual example
1s another instance of the phenomenon, and it is one in which the underlying
geometry is rather easier to understand.

To fit with the conventions of [4], I shall consider the dual version of the
solution, for which the twistor space is determined by the coordinate relations
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where w = Z2°2'/Z%Z% and p = 1(Q—a?). The surfaces of constant w are the
leaves of the foliation of P7 spanned by the Killing vectors. The connection
between the two constructions is made by considering the holomorphic tan-
gent bundle of 7. This is the pull-back to 7 of the rank-4 bundle £ — P7T
that has local sections of the form
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where the As are holomorphic functions of the Zs, homogeneous of degree
zero: [y is the Ward transform of the anti-self-dual Yang-Mills connection
that defines local twistor transport in space-time.




Let L — P7 be the line bundle with sections represented by holomorphic
functions of degree one in Z. Construct an open cover of 7 by taking
Vo, Vi, Va, Vs to be suitable neighbourhoods of Z° = 0, Z! = 0, Z? = 0, and
73 = 0, and trivialize £® L by the four frame fields defined on the respective
neighbourhoods by

(V1) %5‘;—1, X, X - 22%,—23%
(V) X, ZO[)_aZ_O’ —wz2£—2, X - 23%
(Vs) 21%, X, X - 22‘%,_10235%

where X = —2°9/902° + 2'0/82' = —2°8/0Z° + Z'8/dZ" (the generator
one of the symmetries). The corresponding transition matrices are Py =
diag(l,w w1 1), Py; = diag(w™!,1,1,w™"), and
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where g(w) = (g + w)/w(Q + w), with ¢ = 3(Q + a?). We interpret w as the
coordinate on the non-Hausdorff reduced twistor space.

Note that the vectors parallel to Z*9/0Z% span a line sub-bundle of &
is isomorphic to L™, and that F:= F/L™' = TPT ® L.

The general anti-self-dual vacuum metric with two commuting orthogo-
nally transitive Killing vectors 1s

ds? = f(dt — wd8)? + [~ (dr? + d2? + r2d6?) ()

where w and f are functions of r and z such that f*w, = rf, and f2w, = —rf,.
By considering local twistor transport in such a background, one can show
that the bundle £ ® L always has transition matrices of this form, where in
the general case g(z) = f(0,z)7!. The top left-hand two-by-two block in Py



is the patching matrix P, which characterizes the solution uniquely. We can
immediately read off, therefore, that the type D solution in the preceding
article is given by (*), with
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Since f~!(r,z) is an axisymmetric harmonic function in cylindrical polars,
we conclude that it is the potential of a pair of point masses p/Q) and ¢/Q
separated by Q.

A vacuum solution of the form (*) is type D if it admits a non-null Killing
spinor w4? (this is a nontrivial condition, although there are many Killing
spinors with primed indices whatever the form of the curvature). A Killing
spinor with unprimed indices determines a holomorphic section A of the
symmetric tensor product F @s F = L™2® (TPT ®s TPT). By dropping the
fourth element of the local frame for £ in V4 and V;, and the third element
im Vi and Vi, we can represent L @ F' = TPT by the transition matrices
My = diag(1,w !, w™?t), M3, = diag(w™?,1,w™?), and

P

g(w) 1 —wg(w)
M(n: 1 0 —2w
0 0 1

A section of F' ®s F has local representatives A;(w), where : = 0,1,2,3 and
the As are symmetric 3 X 3 matrices. For a global section

A2 = '(UMQ()A()M-;O, Ag = wM31A1M§1, A() = M()]A]Mél,

with A, and Aj; well behaved near w = oo, and Ag and A, well behaved near
w = 0. The first two transition relations imply that the dependence of Ag
and A, on w must be of the form

0 C C L C L
Ag=|C L L}, A=|C 0 C
C L L L C L

where C' means ‘constant’ and L means ‘linear’. After a little algebra, the
third relation then implies that ¢ must be of the form g = ¢;(w)/g2(w), where
g1 1s at most linear in w and g, is at most quadratic. For the solution in the
previous article, g1 = ¢ —pw and g; = Qw +w?: this is essentially the generic
case. For the ‘Euclidean Taub-NUT” solution, ¢; = w and g, = w + 2m.
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