A comment on the preceding article

In the preceding article, Linda Haslehurst and Roger Penrose derive the twistor space of a self-dual type D vacuum metric. As they remark, their solution is one of a class constructed by Tod and Ward from solutions of Laplace's equation in three variables, and by following through the analysis in [1], one can find an explicit form of the metric by solving a linear splitting problem.

Since the solution has two commuting Killing vectors, it also has a 'Yang-Mills' twistor description [2]: the solution is encoded in a holomorphic vector bundle over a one-dimensional non-Hausdorff Riemann surface and can be recovered from its patching matrix P, a 2×2 matrix-valued holomorphic function of a single complex variable w [3,4]. The purpose of this note is to describe the connection between the two twistor constructions. The example is of interest in the context of the Yang-Mills construction because it illustrates what seems to be a general property of type D solutions, that their patching matrices are rational functions of a particularly simple form. Thomas von Schroeter has verified this by direct calculation in the case of the Lorentzian type D metrics, which are known explicitly, but the geometric reason for the special rational form is not yet clear. This self-dual example is another instance of the phenomenon, and it is one in which the underlying geometry is rather easier to understand.

To fit with the conventions of [4], I shall consider the dual version of the solution, for which the twistor space is determined by the coordinate relations

$$
\hat{Z}^0 = \left(1 + \frac{Q}{w}\right)^{n/Q} Z^0, \quad \hat{Z}^1 = \left(1 + \frac{Q}{w}\right)^{-p/Q} Z^1, \quad \hat{Z}^2 = Z^2, \quad \hat{Z}^3 = Z^3,
$$

where $w = Z^0 Z^1 / Z^2 Z^3$ and $p = \frac{1}{2}(Q - \alpha^2)$. The surfaces of constant w are the leaves of the foliation of $\mathbb{P}T$ spanned by the Killing vectors. The connection between the two constructions is made by considering the holomorphic tangent bundle of T. This is the pull-back to T of the rank-4 bundle $E \to \mathbb{P}T$ that has local sections of the form

$$
A^a \frac{\partial}{\partial Z^a},
$$

where the As are holomorphic functions of the Zs, homogeneous of degree zero: E is the Ward transform of the anti-self-dual Yang-Mills connection that defines local twistor transport in space-time.
Let $L \to \mathbb{PT}$ be the line bundle with sections represented by holomorphic functions of degree one in Z^α. Construct an open cover of \mathbb{PT} by taking V_0, V_1, V_2, V_3 to be suitable neighbourhoods of $Z^0 = 0$, $Z^1 = 0$, $Z^2 = 0$, and $Z^3 = 0$, and trivialize $E \otimes L$ by the four frame fields defined on the respective neighbourhoods by

$$(V_0) \quad X, \frac{Z^0}{w} \frac{\partial}{\partial Z^0}, -Z^2 \frac{\partial}{\partial Z^1}, X - Z^3 \frac{\partial}{\partial Z^3}$$

$$(V_1) \quad \frac{\hat{Z}^1}{w} \frac{\partial}{\partial \hat{Z}^1}, X, X - \hat{Z}^2 \frac{\partial}{\partial Z^2}, -\hat{Z}^3 \frac{\partial}{\partial Z^3}$$

$$(V_2) \quad X, Z^0 \frac{\partial}{\partial Z^0}, -wZ^2 \frac{\partial}{\partial Z^2}, X - Z^3 \frac{\partial}{\partial Z^3}$$

$$(V_3) \quad \frac{\hat{Z}^1}{\hat{Z}^1}, X, X - \hat{Z}^2 \frac{\partial}{\partial \hat{Z}^2}, -w\hat{Z}^3 \frac{\partial}{\partial \hat{Z}^3}$$

where $X = -Z^0 \partial/\partial Z^0 + Z^1 \partial/\partial Z^1 = -\hat{Z}^0 \partial/\partial \hat{Z}^0 + \hat{Z}^1 \partial/\partial \hat{Z}^1$ (the generator one of the symmetries). The corresponding transition matrices are $P_{01} = \text{diag}(1, w^{-1}, w^{-1}, 1)$, $P_{31} = \text{diag}(w^{-1}, 1, 1, w^{-1})$, and

$$P_{01} = \begin{pmatrix} g(w) & 1 & wg(w) \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

where $g(w) = (q + w)/w(Q + w)$, with $q = \frac{1}{2}(Q + a^2)$. We interpret w as the coordinate on the non-Hausdorff reduced twistor space.

Note that the vectors parallel to $Z^\alpha \partial/\partial Z^\alpha$ span a line sub-bundle of E isomorphic to L^{-1}, and that $F := E/L^{-1} = T\mathbb{PT} \otimes L^{-1}$.

The general anti-self-dual vacuum metric with two commuting orthogonally transitive Killing vectors is

$$ds^2 = f(dt - \omega d\theta)^2 + f^{-1}(dr^2 + dz^2 + r^2 d\theta^2) \quad (*)$$

where ω and f are functions of r and z such that $f^2 \omega_z = r f_z$ and $f^2 \omega_r = -r f_z$. By considering local twistor transport in such a background, one can show that the bundle $E \otimes L$ always has transition matrices of this form, where in the general case $g(z) = f(\theta, z)^{-1}$. The top left-hand two-by-two block in P_{01}
is the patching matrix P, which characterizes the solution uniquely. We can immediately read off, therefore, that the type D solution in the preceding article is given by (*), with

$$\frac{1}{f(0,z)} = \frac{q}{Qz} + \frac{p}{Q(Q+z)}.$$

Since $f^{-1}(r,z)$ is an axisymmetric harmonic function in cylindrical polar coordinates, we conclude that it is the potential of a pair of point masses p/Q and q/Q separated by Q.

A vacuum solution of the form (*) is type D if it admits a non-null Killing spinor ω^{AB} (this is a nontrivial condition, although there are many Killing spinors with primed indices whatever the form of the curvature). A Killing spinor with unprimed indices determines a holomorphic section A of the symmetric tensor product $F \otimes_S F = L^{-2} \otimes (TPT \otimes_S TPT)$. By dropping the fourth element of the local frame for E in V_0 and V_2, and the third element in V_1 and V_3, we can represent $L \otimes F = TPT$ by the transition matrices $M_{20} = \text{diag}(1, w^{-1}, w^{-1})$, $M_{31} = \text{diag}(w^{-1}, 1, w^{-1})$, and

$$M_{01} = \begin{pmatrix} g(w) & 1 & -wg(w) \\ 1 & 0 & -2w \\ 0 & 0 & 1 \end{pmatrix}.$$

A section of $F \otimes_S F$ has local representatives $A_i(w)$, where $i = 0, 1, 2, 3$ and the As are symmetric 3×3 matrices. For a global section

$$A_2 = wM_{20}A_0M_{20}^t, \quad A_3 = wM_{31}A_1M_{31}^t, \quad A_0 = M_{01}A_1M_{01}^t,$$

with A_2 and A_3 well behaved near $w = \infty$, and A_0 and A_1 well behaved near $w = 0$. The first two transition relations imply that the dependence of A_0 and A_1 on w must be of the form

$$A_0 = \begin{pmatrix} 0 & C & C \\ C & L & L \\ C & L & L \end{pmatrix}, \quad A_1 = \begin{pmatrix} L & C & L \\ C & 0 & C \\ L & C & L \end{pmatrix}$$

where C means 'constant' and L means 'linear'. After a little algebra, the third relation then implies that g must be of the form $g = g_1(w)/g_2(w)$, where g_1 is at most linear in w and g_2 is at most quadratic. For the solution in the previous article, $g_1 = q - pw$ and $g_2 = Qw + w^2$: this is essentially the generic case. For the 'Euclidean Taub-NUT' solution, $g_1 = w$ and $g_2 = w^2 + 2m$.
