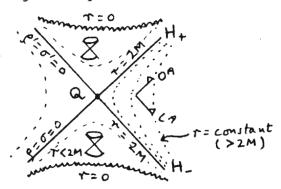
GROWING THE KERR GEOMETRY FROM SEED PART ONE: FIRST CHOOSE A SUITABLE SEED

We take as our starting point Kruskal's map of the (analytically extended) Schwarzschild geometry.



In the diagram, Θ and ϕ are suppressed. The future and past horizons (H₊ and H₋) appear in the diagram as null lines, but they are actually null hypersurfaces with "cylindrical" topology S[±]xR. In each case the null generators are all parallel to each other ($\mathbf{g}, \boldsymbol{\sigma} = 0$ on H₊, $\mathbf{g}', \boldsymbol{\sigma}' = 0$ on H₋). The intersection Q of the two hypersurfaces is a spacelike 2-surface, which (in this case) is a sphere of radius 2M.

The geometry of the spacetime may be regarded as being determined by initial data on Q and on H_{\downarrow} and H_{\downarrow} , the null hypersurfaces emanating orthogonally from Q. The data which is required consists of ψ_0 on H_{\downarrow} , ψ_{ψ} on H_{\downarrow} , and f, σ , f', σ' on Q, together with the intrinsic geometry of Q and its "complex curvature" K (the real part of which is half the Gaussian curvature of Q). If the spacetime is to correspond to a stationary black hole (with H_{\downarrow} and H_{\downarrow} of constant area) all of the data must be zero except for K, which in this case is the same as $-\psi_2$. Thus any stationary black hole corresponds to an especially simple set of initial data. Hawking [1] used the fact that the only non-zero datum is ψ_2 to show that a rotating, stationary black hole must be axisymmetric (there has to be a second Killing vector, distinct from the time-translation Killing vector, which at H_{\downarrow} and H_{\downarrow} points along the generators of the horizons).

For the Schwarzschild geometry, the initial data, the "seed" of the geometry, is simply the above-mentioned sphere, with ψ_2 = -1/8M² (no imaginary part).

We note that at Q the curvature spinor is algebraically special (of type D):

YABOD = 642 GAOB Le LD)

(Ψ_1 and Ψ_3 vanish as well as Ψ_0 and Ψ_4 because f, σ, f', σ' are zero). In the case of Schwarzschild the type D property extends from the "seed" throughout the whole spacetime. We are going to investigate the question: What other "seeds" grow into spacetimes

that are type D?

We obtain a <u>necessary</u> condition for this by looking at the GHP equations for a type D spacetime and picking out the ones that can be applied "intrinsically" to Q. These are

$$y_1 = 3 t y_2$$
 and $y_2 = t^2$

together with their primed versions. (Note that Ψ_2 has spin-weight 0 since $\Psi_2'=\Psi_2$). Letting X = $\Psi_2^{-1/3}$, we have

$$XX = -XT$$
 and $X^2X = 0$.

Thus we are seeking a surface Q whose complex curvature to the power of -1/3 satisfies $X^{\bullet}X = Y^{\bullet}X = 0$. (This problem has already been considered in a similar context by Ludvigsen [2]. However, he needed to impose an extra, arbitrary condition, namely Φ Im[X]dS = 0, in order to arrive at the Kerr horizon. This does not seem to be necessary: see paragraph (5) below.)

Note that $\mu = \text{Re}[X]$ is a <u>real</u> solution of $3^2\mu = 0$. Now $3^3\mu = 0$ can be solved on any surface, but a real solution (not a constant) gives rise to an isometry of Q. Using μ as one of the coordinates it turns out that the metric must have the form

$$ds^2 = d\mu^2/F(\mu) + F(\mu) d\phi^2$$
.

The Gaussian curvature of such a metric is

$$G = -\frac{1}{2} d^2F/d\mu^2.$$

If the real part of X is constant the argument fails but we can use the imaginary part for μ , instead. If both real and imaginary parts are non-constant, they both give rise to isometries. Assuming that Q is not a sphere, both isometries must be the same, and in all cases we have that X must be of the form

$$X = A + B\mu$$
,

with A and B complex constants (there is no implication, at this stage, that B must be pure imaginary: c.f.[2]). Next, we equate the above expression for G with the real part of $-2\Psi_2$:

$$-\frac{1}{2}d^{2}F/d\mu^{2} = -2 \operatorname{Re}[1/X^{3}] = -2 \operatorname{Re}[1/(A + B\mu)^{3}].$$

Integrating (and disallowing B = 0, the case of the sphere), we get

$$F = 2 Re[1/(B^2(A + B\mu))] + C\mu + D$$

with C and D real constants. This may be described as the <u>local</u> solution of the problem. At this point there are 6 real degrees of freedom. All but 2 of these degrees of freedom can be removed by applying appropriate global conditions, as follows.

- 1) We want $F(\mu)$ to have two zeroes, corresponding to the North and South poles of the surface Q.
- 2) We want ϕ to range from 0 to 2π . This can be achieved by replacing μ by a real constant times μ .
- 3) A coordinate transformation $\mu \to \mu$ + constant gives rise to a new F with different A and D, but to the same geometry. So without loss of generality we may take the zeroes of F to be at $\mu = \pm \mu_0$.
- 4) The Gauss-Bonnet theorem, generalized to the complex curvature, tells us

$$\oint \psi_2 \ dS = -2\pi.$$

This amounts to two real conditions on A, B, C and D.

5) The condition \oint GdS = 4π fails to exclude the possibility of equal and opposite conical singularities at the poles of our axisymmetric surface. This possibility must be excluded by one extra condition, namely, $dF/d\mu = -2$ at $\mu = \mu_0$.

When these constraints are worked through in detail we are left with an F of the form

$$F = \mu_0 (1 + u^2) (\mu_0^2 - \mu^2)/(\mu_0^2 + u^2\mu^2)$$

with u and μ_0 real parameters. Making the substitutions

$$\mu = \mu_0 \cos\theta;$$
 $u = a/r_+;$ $\mu_0 = r_+^2 + a^2,$

we can bring the metric to the form

$$ds^{2} = (r_{+}^{2} + a^{2} \cos^{2}\theta) d\theta^{2} + (r_{+}^{2} + a^{2})^{2} \sin^{2}\theta d\phi^{2} / (r_{+}^{2} + a^{2} \cos^{2}\theta)$$

which is indeed the metric of the horizon of a Kerr black hole with mass $M = (r_+^2 + a^2)/2r_+$ and angular momentum J = aM. Note that any spatial cross-section of H_+ or H_- has the same shape as Q.

We are now in a position to "grow" the geometry out from Q using the radial Newman-Penrose (or GHP) equations.

George Burnett-Stuart

References

- [1] S.W. Hawking (1972) Commun. Math. Phys 25, 152-166.
- [2] M.Ludvigsen (1987) Class.Qu.Grav. 4, 619-623.

Many thanks to R.P. and especially Paul Tod for pointing me towards reference [2].