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GROWING THE KERR GEOMETRY FROM SEED
PART ONE: FIRST CHOOSE A SUITABLE SEED

We take as our starting point Kruskal's map of the (analytically
extended) Schwarzschild geometry.

Yz

In the diagram, 6 and ¢ are suppressed. The future and past
horizons (H, and H_) appear in the diagram as null lines, but they
are actually null hypersurfaces with "cylindrical" topology SxR.
In each case the null generators are all parallel to each other
( g,a' = 0 on H,, f',d" = 0 on H.). The intersection Q of the two
hypersurfaces is a spacelike 2-surface, which (in this case) is a
sphere of radius 2M.

The geometry of the spacetime may be regarded as being determined
by initial data on Q and on H, and H_, the null hypersurfaces
emanating orthogonally from Q. The data which is required consists
of ¥ on H,, W4y on H, and ¢, 6, §',6' on Q, together with the
intrinsic geometry of @ and its "complex curvature” K (the real
part of which 1is half the Gaussian curvature of Q). If the
spacetime is to correspond to a stationary black hole (with H, and
H of constant area) all of the data must be zero except for K,
which in this case is the same as - Vo . Thus any stationary black
hole corresponds to an especially simple set of initial data.
Hawking [1] used the fact that the only non-zero datum is g to
show that a rotating, stationary black hole must be axisymmetric
(there has to be a second Killing vector, distinct from the time-
translation XKilling vector, which at H, and H. points along the
generators of the horizons).

For the Schwarzschild geometry, the initial data, the "seed” of the
geometry, 1s simply the above-mentioned sphere, with Vi = -1/8Mz2
(no imaginary part).

We note that at Q the curvature spinor is algebraically special (of
type D):

‘Pﬁg-cu = 6 v, a O Le Lp)

( ¥ and W3 vanish as well as Y% and W because f,fyfcﬁ"are
zero). In the case of Schwarzschild the type D property extends
from the "seed" throughout the whole spacetime. We are going to
investigate the gquestion: What other "seeds" grow into spacetimes
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that are type D7

We obtain a necessary condition for this by looking at the GHP

equations for a type D spacetime and picking out the ones that can
be applied "intrinsically"” to Q. These are

5\V¢ = 3 T ¥ and TT=T?

together with their primed versions. (Note that V¥, has spin-weight
0 since W /=W, ). Letting X = QQ_IJ , Wwe have

% = — Xt and 7EX =0

Thus we are seeking a surface Q whose complex curvature to the
power of ~1/3 satisfies %X = %'*X = 0. (This problem has
already been considered in a similar context by Ludvigsen [2].
However, he needed to impose an extra, arbitrary condition, namely

Im[X]ds = 0, in order to arrive at the Kerr horizon. This doces
not seem to be necessary: see paragraph (5) below.)

Note that py = Re[X] is a real solution of 52}* = 0. Now 51}‘ =0
can be solved on any surface, but a real solution (not a constant)
gives rise to an isometry of Q. Using u as one of the coordinates
it turns out that the metric must have the form

dsz = du?/F(p) + F(u) dgz.
The Gaussian curvature of such a metric is
G = -% d2F/du?.
If the real part of X is constant the argument fails but we can use
the imaginary part for p, instead. If both real and imaginary parts
are non—constant, they both give rise to isometries. Assuming that

Q is not a sphere, both isometries must be the same, and in all
cases we have that X must be of the form

X = A + By,
with A and B complex constants (there is no implication, at this
stage, that B must be pure imaginary: c.f.[2]). Next, we equate the
above expression for G with the real part of -2V, :
~%d2F/du? = -2 Re[1/X’] = -2 Re[1/(A + Bu)’l.
Integrating (and disallowing B = 0, the case of the sphere), we get
F = 2 Re[1/(B2(A + Bu))] + Cu + D

with C and D real constants. This may be described as the local
solJution of the problem. At thiz point there are & real degrees of
freedom. All but 2 of these degrees of freedom can be removed by
applying appreopriate global conditions, as follows.
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1) We want F(u) to have two zeroes, corresponding to the North and
South poles of the surface Q.

2) We want ¢ to range from O to 2n. This can be achieved by
replacing p by a real constant times u.

3) A coordinate transformation p -> p + constant gives rise to a
new F with different A and D, but to the same geometry. So without
loss of generality we may take the zeroces of F to be at p = #pu,.

4) The Gauss—Bonnet theorem, generalized to the complex curvature,
tells us

é ‘4’1_ ds = -2w.

This amounts to two real conditions on A, B, C and D.

5) The condition § GdS = 4w fails to exclude the possibility of
equal and opposite conical singularities at the poles of our
axisymmetric surface. This possibility must be excluded by one
extra condition, namely, dF/dpy = -2 at p = pu,.

When these constraints are worked through in detail we are left
with an F of the form

F = (1 +u2) (pp?2 - p2)/(pe? + uzp?)
with u and p, real parameters. Making the substitutions
H = H, COSB; u = a/r,; yg =r,2 + az2,
we can bring the metric to the form
ds? = (r,2+a2cos28) d62 + (r,2+a?)2? sin?6 d¢2?2/(r,2+a2cos20)
which is indeed the metric of the horizon of a Kerr black hole with
mass M = (r,2+a?)/2r, and angular momentum J = aM. Note that any

spatial cross-section of H, or H. has the same shape as Q.

We are now in a position to "grow" the geometry out from Q using
the radial Newman-Penrose (or GHP) equations.

George Burnett-Stuart
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