## Cohomology of the scalar product diagram in higher dimensions

As an example for the cohomological treatment of twistor diagrams in higher dimensions (cf. [1]) we discuss the scalar product of helicity  $-(1+\frac{r}{2})$  massless fields "based on a line  $\mathcal{L}$ ". Essentially we can just adapt [2] to the case of arbitrary dimensions. We also refer to [2] for notation.

Choosing homogeneous coordinates for  $\mathbb{C}P^n, n > 3$ , we let  $\pi_n$  be the forgetful map  $\pi_n : \mathbb{C}P^n - \mathbb{C}P^{n-4} \to \mathbb{C}P^3$ . We write  $\mathcal{L}^{n-2} := \pi_n^{-1}(\mathcal{L}^1) \cup \mathbb{C}P^{n-4}$  where  $\mathcal{L}^1$  is a line in  $\mathbb{C}P^3$ . The fibration

induces an injection

$$\pi_n^*: H^1(\mathbf{C}P^3 - \mathcal{L}^1; \mathcal{O}(r)) \hookrightarrow H^1(\mathbf{C}P^n - \mathcal{L}^{n-2}; \mathcal{O}(r)), \quad r \in \mathbf{Z},$$
 (2)

in the following way:  $(\pi_n^{-1}U_1, \pi_n^{-1}U_2)$  is a Stein cover for  $\mathbb{C}P^n - \mathcal{L}^{n-2}$  if  $(U_1, U_2)$  is a Stein cover for  $\mathbb{C}P^3 - \mathcal{L}^1$ . If  $f_{12}$  is a Čech representative for  $f \in H^1(\mathbb{C}P^3 - \mathcal{L}^1; \mathcal{O}(r))$  then  $f_{12} \circ \pi_n$  is a representative for  $\pi_n^* f$ .

As in the case n=3 we have

$$H^{k}(\mathbb{C}P^{n}; \mathcal{O}(r)) = 0, \qquad \text{if } 0 < k < n,$$

$$H^{0}(\mathbb{C}P^{n} - \mathcal{L}^{n-2}; \mathcal{O}(r)) = H^{0}(\mathbb{C}P^{n}; \mathcal{O}(r)), \qquad (3)$$

$$H^{k}(\mathbb{C}P^{n} - \mathcal{L}^{n-2}; \mathcal{O}(r)) = 0 \qquad \text{for } k \geq 2.$$

Let  $X := \mathbb{C}P^n$ ,  $U := \mathbb{C}P^n - \mathcal{L}^{n-2}$ . The relative cohomology exact sequence

then gives us

$$H^{1}(U; \mathcal{O}(r)) \cong H^{2}(X, U; \mathcal{O}(r)),$$
  

$$H^{0}(X, U; \mathcal{O}(r)) = H^{1}(X, U; \mathcal{O}(r)) = 0.$$
(5)

Thus, by the Künneth formula,

$$H^{1}(\mathbf{C}P^{n} - \mathcal{L}_{1}^{n-2}; \mathcal{O}(r)) \otimes H^{1}(\mathbf{C}P^{n*} - \mathcal{L}_{2}^{n-2*}; \mathcal{O}(r))$$

$$\cong H^{4}(\mathbf{C}P^{n} \times \mathbf{C}P^{n*}, \mathcal{L}_{1}^{n-2} \times \mathcal{L}_{2}^{n-2*}; \mathcal{O}(r, r)),$$
(6)

as a straightforward extension of proposition 3.1. in [2]. The "higher dimensional propagator"

$$h_{-r}^{n} = \frac{(n+r)! \mathcal{D}^{n} Z \mathcal{D}^{n} W}{(2\pi i)^{n-3} (Z^{i} W_{i})^{n+1+r}} \in H^{0}(\mathbf{C} P^{n} \times \mathbf{C} P^{n*} - \Sigma; \Omega^{2n}(-r, -r))$$
 (7)

(where n+1+r>0 and  $\Sigma$  is the singularity set of  $h_{-r}^n$ ) together with a contour in

$$H_{2n+4}(\mathbf{C}P^{n} \times \mathbf{C}P^{n*} - \Sigma, \mathcal{L}_{1}^{n-2} \times \mathcal{L}_{2}^{n-2*} - \Sigma; \mathbf{C})$$

$$\stackrel{\mathrm{Thom}}{\cong} H_{2(n-2)}(\mathcal{L}_{1}^{n-2} \times \mathcal{L}_{2}^{n-2*} - \Sigma; \mathbf{C})$$
(8)

induces a continuous functional on (6) (see §3.2. in [2]) and hence via  $\pi_n^*$  (and its analogue for  $\mathbb{C}P^{n*}$  which we again denote by  $\pi_n^*$ ) a continuous functional

$$F_n: H^1(\mathbf{C}P^3 - \mathcal{L}_1^1; \mathcal{O}(r)) \otimes H^1(\mathbf{C}P^{3*} - \mathcal{L}_2^{1*}; \mathcal{O}(r)) \to \mathbf{C}.$$
 (9)

If  $\mathcal{L}_1^{n-2}$  and  $\mathcal{L}_2^{n-2*}$  are in general position, i.e.

$$(\mathcal{L}_1^{n-2})^{\perp} \cap \mathcal{L}_2^{n-2*} = \emptyset, \tag{10}$$

then  $V:=\mathcal{L}_1^{n-2}\times\mathcal{L}_2^{n-2*}-\Sigma$  has the topology of

$$\{([Z], [W]) \in \mathbb{C}P^{n-2} \times \mathbb{C}P^{n-2*} \mid Z^iW_i \neq 0\}$$

which fibres over  $\mathbb{C}P^{n-2}$  with contractible fibre  $\mathbb{C}^{n-2}$ :

$$\mathbf{C}^{n-2} \to V \quad \ni \quad ([Z], [W]) \\
\downarrow \qquad \downarrow \qquad \downarrow \qquad (11) \\
\mathbf{C}P^{n-2} \quad \ni \qquad [Z]$$

so that  $H_*(V; \mathbf{C}) = H_*(\mathbf{C}P^{n-2}; \mathbf{C})$ . Therefore there is a unique contour  $C \sim \mathbf{C}P^{n-2}$ ,  $[C] \in H_{2(n-2)}(V; \mathbf{C})$ , which associates the functional  $F_n$  of (9) to the kernel (7).

It remains to be seen that this functional does indeed coincide with the scalar product: We assume that the field

$$f_r^1 = \partial^* f_r^0 \in H^1(\mathbf{C}P^3 - \mathcal{L}_1^1; \mathcal{O}(r))$$

$$\tag{12}$$

is given as image under the Mayer-Vietoris map  $\partial^*$  of

$$f_r^0 \in H^0(\mathbf{C}P^3 - H_1^2 - H_2^2; \mathcal{O}(r)),$$
 (13)

where the hyperplanes  $H_1^2$ ,  $H_2^2$  define  $\mathcal{L}_1^1 = H_1^2 \cap H_2^2$ , and similarly for  $g_\tau^1$  based on  $\mathcal{L}_2^{1*} = H_3^{2*} \cap H_4^{2*}$ . Then  $\pi_n^* f_\tau^1 = \partial_n^* \pi_n^* f_\tau^0$  (with  $\partial_n^*$  defined in the obvious way) and by theorem 1 of [3], carried over to higher dimensions,  $F(f_\tau^1, g_\tau^1)$  can be evaluated as an integral

$$\int_{(S^1)^4 \times C} (\pi_n^* f_\tau^0)(Z) (\pi_n^* g_\tau^0)(W) h_{-\tau}^n(Z, W)$$
(14)

over an  $(S^1)^4$ -bundle. Let for example  $H_{1,2}^2, H_{3,4}^{2*}$  be given by

$$H_{i+1}^{2} = \{ [Z] \in \mathbb{C}P^{3} \mid Z^{i} = 0 \}, H_{i+3}^{2*} = \{ [W] \in \mathbb{C}P^{3*} \mid W_{i} = 0 \}, i = 0, 1;$$
 (15)

and define  $(S^1)^4 \times C$  in these coordinates as

$$\begin{cases}
([Z], [W]) \in \mathbb{C}P^{n} \times \mathbb{C}P^{n*} \mid \\
[Z] = [(\epsilon e^{i\phi_{0}}, \epsilon e^{i\phi_{1}}, ra_{2}, ra_{3}, \sqrt{1 - r^{2}}a_{4}, \dots, \sqrt{1 - r^{2}}a_{n})], \\
[W] = [(\epsilon e^{i\psi_{0}}, \epsilon e^{i\psi_{1}}, r\bar{a}_{2}, r\bar{a}_{3}, \sqrt{1 - r^{2}}\bar{a}_{4}, \dots, \sqrt{1 - r^{2}}\bar{a}_{n})]. \\
a_{i} = r_{i}e^{i\phi_{i}}; a_{2}\bar{a}_{2} + a_{3}\bar{a}_{3} = a_{4}\bar{a}_{4} + \dots + a_{n}\bar{a}_{n} = 1; \\
r, r_{i} \in [0, 1]; \phi_{i}, \psi_{i} \in [0, 2\pi].
\end{cases} (16)$$

We could now just insert elementary states, based on  $\mathcal{L}_1^1$ ,  $\mathcal{L}_2^{1*}$  for  $f_r^0(Z)$ ,  $g_r^0(W)$  to verify agreement with the scalar product on a dense subset (cf.[4]). Alternatively, using the fact that  $\pi_n^* f_r^0$ ,  $\pi_n^* g_r^0$  are constant along the fibres of  $\pi_n$  (i.e. they do not depend on the var iables  $Z^4, \ldots, Z^n; W_4, \ldots, W_n$ ), one can try to reduce (14) to the familiar  $\mathbb{C}P^n \times \mathbb{C}P^{n*}$ -integral which is known to represent the scalar product in the case r > -4. Integrating out the 2n - 7 variables  $r_5^2, \ldots, r_n^2; \phi_4, \ldots, \phi_n$  we are left with

$$\frac{(n+r)!}{(n-4)!} \int_{(S^1)^4 \times CP^1 \times [0,\infty]} \frac{f_r^0(Z)g_r^0(W)(Z^2W_2 + Z^3W_3)^{n-3}\mathcal{D}^3Z\mathcal{D}^3W\,t^{n-4}dt}{(Z^0W_0 + Z^1W_1 + (t+1)(Z^2W_2 + Z^3W_3))^{n+1+r}}$$

where  $t = \frac{r^2}{1-r^2}$  and  $(S^1)^4 \times \mathbb{C}P^1$  is the standard contour for the scalar product-twistor diagram in  $\mathbb{C}P^3 \times \mathbb{C}P^{3*}$ . n-3 partial integrations w.r.t. t give the standard integral for this diagram if r > -4. Of course it would be desirable to establish the n-independence of the functionals  $F_n$  (9) and other relations between representatives of functionals in different dimensions (see [1]) in more abstract terms, probably starting off from [5].

We note however that an increase in dimensions genuinely widens the possibility of representing such functionals by twistor diagrams without boundaries. Moreover, one could try to accommodate some additional space-time structure by a more essential use of the extra dimensions.

## References

- [1] F.Müller: Twistor Diagrams in higher dimensions. TN 33.
- [2] S.Huggett&M.A.Singer: Relative Cohomology and Projective Twistor Diagrams. TAMS 324 1 (1991).
- [3] S.Huggett&M.A.Singer: Cohomological contours and cobord maps.TN30.
- [4] M.G.Eastwood&A.M.Pilato: On the density of elementary states, in Further Advances in twistor theory. Pitman (1990).
- [5] M.L.Ginsberg: A cohomological scalar product construction, in Advances in twistor theory. Pitman (1979).

Frant Min Ver