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A comment on the preceding article

In the preceding article, Linda Haslehurst and Roger Penrose derive the
twistor space of a self-dual type D vacuum metric. As they remark, their
solution is one of a class constructed by Tod and Ward from solutions of
Laplace’s equation in three variables, and by following through the analysis
in [1], one can find an explicit form of the metric by solving a linear splitting
problem.

Since the solution has two commuting Killing vectors, it also has a ‘Yang-
Mills’ twistor description [2]: the solution is encoded in a holomorphic vector
bundle over a one-dimensional non-Hausdorff Riemann surface and can be
recovered from its patching matrix P, a 2 x 2 matrix-valued holomorphic
function of a single complex variable w [3,4]. The purpose of this note is
to describe the connection between the two twistor constructions. The ex-
ample 1s of interest in the context of the Yang-Mills construction because
it illustrates what seems to be a general property of type D solutions, that
their patching matrices are rational functions of a particularly simple form.
Thomas von Schroeter has verified this by direct calculation in the case of
the Lorentzian type D metrics, which are known explicitly, but the geometric
reason for the special rational form is not yet clear. This self-dual example
1s another instance of the phenomenon, and it is one in which the underlying
geometry is rather easier to understand.

To fit with the conventions of [4], I shall consider the dual version of the
solution, for which the twistor space is determined by the coordinate relations
70 Q p/Qro 71 Q “7/@ 1 52 2 73 3
7 :(1+—) 70 7 :(1+—) AR N B

w w
where w = Z2°2'/Z%Z% and p = 1(Q—a?). The surfaces of constant w are the
leaves of the foliation of P7 spanned by the Killing vectors. The connection
between the two constructions is made by considering the holomorphic tan-
gent bundle of 7. This is the pull-back to 7 of the rank-4 bundle £ — P7T
that has local sections of the form

o 0
0z’

where the As are holomorphic functions of the Zs, homogeneous of degree
zero: [y is the Ward transform of the anti-self-dual Yang-Mills connection
that defines local twistor transport in space-time.




Let L — P7 be the line bundle with sections represented by holomorphic
functions of degree one in Z. Construct an open cover of 7 by taking
Vo, Vi, Va, Vs to be suitable neighbourhoods of Z° = 0, Z! = 0, Z? = 0, and
73 = 0, and trivialize £® L by the four frame fields defined on the respective
neighbourhoods by

(V1) %5‘;—1, X, X - 22%,—23%
(V) X, ZO[)_aZ_O’ —wz2£—2, X - 23%
(Vs) 21%, X, X - 22‘%,_10235%

where X = —2°9/902° + 2'0/82' = —2°8/0Z° + Z'8/dZ" (the generator
one of the symmetries). The corresponding transition matrices are Py =
diag(l,w w1 1), Py; = diag(w™!,1,1,w™"), and

glw) 1 wg(w) wy(w)

1

1 0 0 0
Foo=1"9 0o 0
0 0 0 1
where g(w) = (g + w)/w(Q + w), with ¢ = 3(Q + a?). We interpret w as the
coordinate on the non-Hausdorff reduced twistor space.

Note that the vectors parallel to Z*9/0Z% span a line sub-bundle of &
is isomorphic to L™, and that F:= F/L™' = TPT ® L.

The general anti-self-dual vacuum metric with two commuting orthogo-
nally transitive Killing vectors 1s

ds? = f(dt — wd8)? + [~ (dr? + d2? + r2d6?) ()

where w and f are functions of r and z such that f*w, = rf, and f2w, = —rf,.
By considering local twistor transport in such a background, one can show
that the bundle £ ® L always has transition matrices of this form, where in
the general case g(z) = f(0,z)7!. The top left-hand two-by-two block in Py



is the patching matrix P, which characterizes the solution uniquely. We can
immediately read off, therefore, that the type D solution in the preceding
article is given by (*), with

1

e |

f(0,2)  Qz  Q(Q+=z)

Since f~!(r,z) is an axisymmetric harmonic function in cylindrical polars,
we conclude that it is the potential of a pair of point masses p/Q) and ¢/Q
separated by Q.

A vacuum solution of the form (*) is type D if it admits a non-null Killing
spinor w4? (this is a nontrivial condition, although there are many Killing
spinors with primed indices whatever the form of the curvature). A Killing
spinor with unprimed indices determines a holomorphic section A of the
symmetric tensor product F @s F = L™2® (TPT ®s TPT). By dropping the
fourth element of the local frame for £ in V4 and V;, and the third element
im Vi and Vi, we can represent L @ F' = TPT by the transition matrices
My = diag(1,w !, w™?t), M3, = diag(w™?,1,w™?), and

P

g(w) 1 —wg(w)
M(n: 1 0 —2w
0 0 1

A section of F' ®s F has local representatives A;(w), where : = 0,1,2,3 and
the As are symmetric 3 X 3 matrices. For a global section

A2 = '(UMQ()A()M-;O, Ag = wM31A1M§1, A() = M()]A]Mél,

with A, and Aj; well behaved near w = oo, and Ag and A, well behaved near
w = 0. The first two transition relations imply that the dependence of Ag
and A, on w must be of the form

0 C C L C L
Ag=|C L L}, A=|C 0 C
C L L L C L

where C' means ‘constant’ and L means ‘linear’. After a little algebra, the
third relation then implies that ¢ must be of the form g = ¢;(w)/g2(w), where
g1 1s at most linear in w and g, is at most quadratic. For the solution in the
previous article, g1 = ¢ —pw and g; = Qw +w?: this is essentially the generic
case. For the ‘Euclidean Taub-NUT” solution, ¢; = w and g, = w + 2m.
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Kinking and Causality

Andrew Chamblin and Roger Penrose

Introduction

Recently, there has been some speculation along the following lines:

Suppose M is a compact spacetime, with
OM =S 20

(£ may be single three-manifold or the disjoint union of several). Let v be a timelike
vector field with respect to the Lorentz metric, and let kink(0M;v) denote the
kinking number of v with respect to IM (see [1] or [2]).

Recently, there has been some suspicion that there may be a relation between
the topology of M, along with the value of kink(0M;v), and the existence of closed
timelike curves in M. In particular it has been conjectured that if M = S* and
kink(0M;v) = 0, then there must exist closed timelike curves in M (M assumed to
be space and time orientable).

In this paper, we show that the above conjecture is false (by counterexample).

In fact, we prove the more general

Proposition 1 Let ¥ be any closed, orientable three-manifold, n € Z an arbi-

trary integer. Then there exists a compact causal spacetime M with OM = ¥ and
kink(OM;v) = n, where v is a timelike vector field.

Proposition 2 If M is compact and causality violating, with M = £ % 0, then

there exists a continuous deformation of the metric on M such that the new spacetime

with deformed metric does not possess closed timelike curves.
(Note: Deforming the metric does not alter the kinking number).

The proofs of Propositions 1 and 2 draw on the idea of the counterexample.

Construction of Counterexample

To construct the example, consider the manifold

M =CP? (5" x 5% (1)
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where 4k denotes “connected sum”. Let e(M) = “Euler number of M”, then e(M) =
e(CP?) + e(S' x §3) —2.
Since e(CP?) = 3 and e(S* x S%) =0 we find

e(M)=1 (2)

Define the manifold M’ by
M =M~ D*, (3)

where D* is a four-ball. Then
e(M)=0 (4)

Thus, we can put a nonvanishing vector field v on M’ which has zero kinking on
oM’ = S3 ie.,
kink(OM';v) =0 (5)

Now, one may suppose that there are closed timelike curves in M’; in fact, if v
is outward normal on M’ there must exist closed timelike curves (by a standard
argument). However, we shall now show that we can always “cut” all of the closed
timelike curves in M’ = M — D* by choosing the D* that we remove from M cleverly.
We shall do this “choosing” in an essentially constructive manner.

Hence, take M = CP? 4 (5! x S°) as above and let v be a vector field on M,

1.e., visually:

3
S’(S ou‘_t' 2

— ——

o~ —

\—/\/\/
]

Remove a ball D from around the singular point of v, so that

oD* = oM’ = §3.
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Now, we can cover M’ with a finite number of sets B,; of the form

Byi={zeIt(p) 1 (q)]qe I"(p)}

Furthermore, we can take the sets in this finite cover to be fine enough that they

are all locally causal (i.e., no closed timelike curve, or CTC, lies entirely in any one

of the B,;s). Visually: )
B ) ‘ (DC a,[ Cou a—{
pi J
Mme o S -('I/\a‘f

¢t this never

/ L\GFPQHS

8
{
Pi e M
Now, the crucial idea of the construction depends upon our ability to cut all

of the CTCs by removing a finite number of four - balls. That we can do this is

reasonably intuitively obvious, but we justify this construction more rigorously as

follows.

Begin by successively removing the ‘¢ = 0’ Cauchy surface, C; from each of our

locally causal covering sets B,;, as shown:

A 3 v > . aw ¢

Bp; C=D (Cimsa Coety

\ surface = open three -
dicl)

t
Now, at each stage C; may already be intersected by a previously removed part
(assumed to be a union of three-disks), R;_;, so subdivide to get a covering of what’s

left by three-disks, (D3s), as shown:



1)\

Qu‘f w iown ]vx'to
r€37°V15 Inomeomorflﬂ(?
to D’

/ intersections of C:

R:- ,HL revious region Ri
Next, modify C; accordmg to the following two rules:

dot COI‘I‘(’.S’DO/\—C/S fo

QJJ‘M@A% face <
(1] \ (2] L fl\f““@

with with ¢ eTcs cand ch

N O

Adjoin the result to R;_; to get R;, which is thus given as a disjoint union of

three-balls, D?, as shown:

o ld rcmoucc{ f?ar*l()
Qi‘l

</R~‘ TS 7"LMS J}‘gjorn_t
untron O‘f ‘foce* cf?s/(f

Finally, thicken out the D?s to get disjoint four-balls Bls which clearly cut the
CTCs.

Hence, we can cut all of the CTC’s with a finite number of such four - balls. We
now connect each of these ‘cut out regions’ to the original deleted region (i.c., where
D* was) via ‘little tubes’ 7; = S3 x [0,1]; that is, we cut out a little tube leading
from the old boundary of M’ (M’ = dD*) to the new boundary component formed

by removing B, as shown:



0r‘7j7hw, AF )
QM’—E) 53 17++}C “ful)t') TJ‘)wl\FOL\ i S -
‘l/ 'i"ke L)Oumclarj O'F pcw\oue(?/ /‘Qj:o
= p’x Lo, 1]

//__7
EOwaarj O-F p

emoved 7 Aour-ball, Bj

wLﬁC/l’\ woa$ remoueo/ JCO

Call the new manifold obtained after such a finite sequence of operations ‘N’.

Then clearly
ON = §°
since the total topology of the removed regions

R2D'UThuT,u.UT,UBUB;U..UB,

is still D%, and dD* = §3. Furthermore, v is still global and nonvanishing on N, and
e(N) = 0; hence, kink(ON;v) = 0.

Thus, N is a causal spacetime (which is orientable) for which N = S* and
kink(ON;v) = 0; hence, N constitutes a counterexample to the conjecture mentioned

in the introduction.

Proof of the general statement

To prove the more general Propositions (stated in the introduction) we simply
generalize the above construction.

That is, let ¥ be any three-manifold (or perhaps disjoint union of three-manifolds)
and n € Z any integer. Then we can always find a Lorentz manifold M (with timelike
vector v) such that M = ¥ and kink(0M;v) = n. This follows from the general

formula

«(M)=%i, + kink(IM;v) (6)
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(see [2]). If M should happen to possess CTC’s we can always do the above construc-
tion and “cut” them by removing a finite number of four - balls B;-‘ and connecting
these four - balls to the original boundary by removing little (nonintersecting) tubes
T;. (For Proposition 2, we simply continuously retract the T;s and the Bfs, dragging
the metric with them). The fundamental idea of this paper, then, is represented in

the following picture:

or 7*’La/ or bitrar
",,;jﬂ_,' ‘(’bouvx%arj ) Z j

SFQCC ‘b?me

v

3 ‘Ml\“{m'

!

Y“QW\O\)QO} ‘l/'\ou}~
L)O_HS
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GROWING THE KERR GEOMETRY FROM SEED
PART ONE: FIRST CHOOSE A SUITABLE SEED

We take as our starting point Kruskal's map of the (analytically
extended) Schwarzschild geometry.

Yz

In the diagram, 6 and ¢ are suppressed. The future and past
horizons (H, and H_) appear in the diagram as null lines, but they
are actually null hypersurfaces with "cylindrical" topology SxR.
In each case the null generators are all parallel to each other
( g,a' = 0 on H,, f',d" = 0 on H.). The intersection Q of the two
hypersurfaces is a spacelike 2-surface, which (in this case) is a
sphere of radius 2M.

The geometry of the spacetime may be regarded as being determined
by initial data on Q and on H, and H_, the null hypersurfaces
emanating orthogonally from Q. The data which is required consists
of ¥ on H,, W4y on H, and ¢, 6, §',6' on Q, together with the
intrinsic geometry of @ and its "complex curvature” K (the real
part of which 1is half the Gaussian curvature of Q). If the
spacetime is to correspond to a stationary black hole (with H, and
H of constant area) all of the data must be zero except for K,
which in this case is the same as - Vo . Thus any stationary black
hole corresponds to an especially simple set of initial data.
Hawking [1] used the fact that the only non-zero datum is g to
show that a rotating, stationary black hole must be axisymmetric
(there has to be a second Killing vector, distinct from the time-
translation XKilling vector, which at H, and H. points along the
generators of the horizons).

For the Schwarzschild geometry, the initial data, the "seed” of the
geometry, 1s simply the above-mentioned sphere, with Vi = -1/8Mz2
(no imaginary part).

We note that at Q the curvature spinor is algebraically special (of
type D):

‘Pﬁg-cu = 6 v, a O Le Lp)

( ¥ and W3 vanish as well as Y% and W because f,fyfcﬁ"are
zero). In the case of Schwarzschild the type D property extends
from the "seed" throughout the whole spacetime. We are going to
investigate the gquestion: What other "seeds" grow into spacetimes
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that are type D7

We obtain a necessary condition for this by looking at the GHP

equations for a type D spacetime and picking out the ones that can
be applied "intrinsically"” to Q. These are

5\V¢ = 3 T ¥ and TT=T?

together with their primed versions. (Note that V¥, has spin-weight
0 since W /=W, ). Letting X = QQ_IJ , Wwe have

% = — Xt and 7EX =0

Thus we are seeking a surface Q whose complex curvature to the
power of ~1/3 satisfies %X = %'*X = 0. (This problem has
already been considered in a similar context by Ludvigsen [2].
However, he needed to impose an extra, arbitrary condition, namely

Im[X]ds = 0, in order to arrive at the Kerr horizon. This doces
not seem to be necessary: see paragraph (5) below.)

Note that py = Re[X] is a real solution of 52}* = 0. Now 51}‘ =0
can be solved on any surface, but a real solution (not a constant)
gives rise to an isometry of Q. Using u as one of the coordinates
it turns out that the metric must have the form

dsz = du?/F(p) + F(u) dgz.
The Gaussian curvature of such a metric is
G = -% d2F/du?.
If the real part of X is constant the argument fails but we can use
the imaginary part for p, instead. If both real and imaginary parts
are non—constant, they both give rise to isometries. Assuming that

Q is not a sphere, both isometries must be the same, and in all
cases we have that X must be of the form

X = A + By,
with A and B complex constants (there is no implication, at this
stage, that B must be pure imaginary: c.f.[2]). Next, we equate the
above expression for G with the real part of -2V, :
~%d2F/du? = -2 Re[1/X’] = -2 Re[1/(A + Bu)’l.
Integrating (and disallowing B = 0, the case of the sphere), we get
F = 2 Re[1/(B2(A + Bu))] + Cu + D

with C and D real constants. This may be described as the local
solJution of the problem. At thiz point there are & real degrees of
freedom. All but 2 of these degrees of freedom can be removed by
applying appreopriate global conditions, as follows.



24

1) We want F(u) to have two zeroes, corresponding to the North and
South poles of the surface Q.

2) We want ¢ to range from O to 2n. This can be achieved by
replacing p by a real constant times u.

3) A coordinate transformation p -> p + constant gives rise to a
new F with different A and D, but to the same geometry. So without
loss of generality we may take the zeroces of F to be at p = #pu,.

4) The Gauss—Bonnet theorem, generalized to the complex curvature,
tells us

é ‘4’1_ ds = -2w.

This amounts to two real conditions on A, B, C and D.

5) The condition § GdS = 4w fails to exclude the possibility of
equal and opposite conical singularities at the poles of our
axisymmetric surface. This possibility must be excluded by one
extra condition, namely, dF/dpy = -2 at p = pu,.

When these constraints are worked through in detail we are left
with an F of the form

F = (1 +u2) (pp?2 - p2)/(pe? + uzp?)
with u and p, real parameters. Making the substitutions
H = H, COSB; u = a/r,; yg =r,2 + az2,
we can bring the metric to the form
ds? = (r,2+a2cos28) d62 + (r,2+a?)2? sin?6 d¢2?2/(r,2+a2cos20)
which is indeed the metric of the horizon of a Kerr black hole with
mass M = (r,2+a?)/2r, and angular momentum J = aM. Note that any

spatial cross-section of H, or H. has the same shape as Q.

We are now in a position to "grow" the geometry out from Q using
the radial Newman-Penrose (or GHP) equations.

George Burnett-Stuart
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The Bogomolny Hierarchy and Higher Order Spectral Problems.

I.A.B.Strachan

The starting point for the construction and solution of a wide range of integrable mod-
els is to write the equation as the integrability condition for the otherwise overdetermined

linear system (where A € CPP! is the spectral parameter):

Bps = —U(N).s,

(%s = —V(A).S. (1)

The integrability conditions for (1) is
0.V —-0U+[U,V]=0, (2)

and equating powers of A (if U and V are polynomial in ) yields the equation in question.
Many of those systems which are known to have a twistorial description (such as the KdV,
mKdV, NLS, SG and N-wave equations) arise from a so-called first order spectral problem,
with

U=XA+Q(z,t),

V=) MNA(s,1).

k 0
In this article the matrices will be taken to be si(2,C)-valued, with™ A = (0 )
—K

0 .

and @ = 10) ,l.e. A € h and @ € k, where h is the Cartan subalgebra and k 1s
q

the complement. A higher order spectral problem is one for which U and V are general

polynomial functions, namely:

U= NA+NT1Q1+... +Q,p,
V=AYV + V4. 4V,

The simplest example (p = 2,n = 4 and @2 = 0) results in the derivative Non-Linear
Schrodinger (or DNLS) equation. The purpose of this article is two-fold: firstly to show
how such systems are nothing more than a reduction of the Bogomolny hierarchy intro-
duced in [1], and secondly to generalise these systems to (2+ 1)-dimensions while retaining

their integrability.

* In the terminology of [1], the fields are of type 3 type o fields will not be considered here.
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The following method to generate the matrices Q1,...,@p, Vo, ..., Vo for these higher
order problems is due to Crumey [2]. Let

u=IN.A,
v=A"A.

These trivially satisfy (2). However, this equation is gauge invariant, so if w(z,t) is a
X-dependent gauge transformation (often called a ‘dressing transformation’), defined by
W= expy o wid™* with w; € si(2,C), then U and V, defined by
U=wuw ! —ww™?,
V = wow ! — wtw_l ,
will also satisfy (2). Assuming that w is chosen so that U and V involve only non-negative
powers of A yields, on projecting onto positive (including the A% term) and negative powers
of A, the equations
U=(NwAw™1),, V=(\wAw ), ,
wl = (Wwhw )| ww ! = (APwAw™)_

W
These simplify further by decomposing w as w = h.k, where h = } o, hi(z, t)A™,
hi(z,t) € h and k = 322, ki(z,1)A™", ki(z,t) € k. One then has

U=(NkAk™),, V =(A\"kAk ).

Let Ap_; denote the coefficient of A™* in the expansion of kAk—! (the reason for this skew

choice will become apparent later), i.e.

L
An—i:Zr_! Z [k317[k32""’[k5r7A]"']]'
r=1 ({31}12 8;=1)

From this proceadure one obtains the general form of the functions U and V . The matrices
ki,...,kp are matrix valued fields. The integrable equation itself (which connects the
time evolution of these fields with their spacial derivatives), together with the remaining

matrices, may be found using the above equations, or equivalently, equation (2).

Having found the general form of U and V it remains to show how these are contained

within the Bogonolny hierarchy. Assuming m =n —p > 0, the matrix V may be written
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in the form

Recall [1] that given the minitwistor space O(n), the line bundle over the Riemann

sphere of Chern class n > 1, the Ward construction gives rise to the linear system
{[0: + Ai] = A[Osyy + Biga]l}s =0, i=0,...,n—1,
where A; and Bjy; are sl(2,C)-valued gauge potentials. With the symmetry generated

by 0,,, together with B; = 0,1 = 1,...,,n —1,B, = Ap4+1,40 = A, relabelling 2o =

t,zm = z, and eliminating the other variables results in (3) :

[0 — MOy, s = —A.s ) o
" : >:>[8z-,\maz]3:_{2/\i/4i}.s’
[0y — AOz)s = —Ap_i.s ) i=0
[0x — )‘azmu]s = —Am.s ,
: : é@xs:—{zz\‘AmjL,-}.s,
Ours = Auls = [t + Ml

Thus these higher order spectral problems may all be embedded within the Bogomolny
hierarchy. Solutions of the simplest example, that of the DNLS equation, correspond to

bundles over the space O(4) with certain symmetries.

These systems have an elegant generalisation to (2 + 1)-dimensions [3]. By replacing

the term A™d; in (3) by A™dJ, one naturally obtains examples of (2 + 1)-dimensional
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integrable systems. Thus the DNLS equation has the following generalisation:

100 = Opytp + 210, (V4]
0V = 0y|v)* .

These may be given a twistorial description by introducing a weighted twistor space
defined by Wonp = {(Zo, 21, 2Z2,23)}/ ~, where Zy, Z1 are coérdinates on the Riemann

sphere, Z3 , Z3 € €, and ~ is the equivalence relation
(ZU’ AWAE Z3) ~ (ﬂZo,le,meQ,ppZ:;), Ve CP'.

Reimposing the symmetry d; = 0y corresponds to factoring out by a non-vanishing holo-
morphic vector field on T, , to recover O(m + p), exactly analogous to the construction
of the minitwistor space O(2) from standard twistor space.

T LU
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Cohomology of the scalar product diagram in higher dimensions

As an example for the cohomological treatment of twistor diagrams in higher
dimensions (cf. [1]) we discuss the scalar product of helicity —(1 + %) massless
fields “based on a line £”. Essentially we can just adapt [2] to the case of
arbitrary dimensions. We also refer to [2] for notation.

Choosing homogeneous coordinates for CP™,n > 3, we let 7, be the forgetful
map 7, : CP®™ — CP* % — CP3. We write £"72 := #7}(L') U CP" * where
£! is a line in CP3. The fibration

c*3 —» cCcP*-L"% 3 [(29...,23...,2"))
Tn | l (1)
cpPi-ct > [(2°...,2%)
induces an injection

7y HY(CP3 - £Y;0(r)) — HY(CP™ — L*2,0(r)), r€Z, (2)

in the following way: (x, Uy, w, 1U;) is a Stein cover for CP™ — L*~2 if (Uy, Us)
is a Stein cover for CP3— L. If f1, is a Cech representative for f € HY{(CP3—
L'; O(r)) then f12 o, is a representative for =, f.

As in the case n = 3 we have

H¥(CP™;0(r)) =0, if0<k<n,
HO(CP™ — L™ 2%,0(r)) = HY(CP™; O(r)), (3)
H*(CP" — L"~%,0(r)) =0 for k > 2.

Let X := CP™ U := CP™ — L%, The relative cohomology exact sequence

0 —  HOYX;0(r)) 5 H(U;0(r)) —
- T - OO < ok —
- HYX,U;0(r)) - \HZ(XZ;OO(r))J - HYU;0(r)) -

then gives us
HYU;0O(r)) = H3(X,U
HOX,U;0(r)) = H}(X,

Thus, by the Kunneth formula,

HYCP™ — L}7%,0(r)) ® HYCP™ — L37,0(r)) (6)
> HYCP" x CP™ L} ™" x L37*,0(r, 7)),

as a straightforward extension of proposition 3.1. in [2].
The “higher dimensional propagator”

. (ntryDrZD*W
—-r (27”;)11-3(ZiW1_)n+1+r

€ H°(CP" x CP™ — %;Q*"(—r,~-7)) (7)
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(where n+ 1+ 7 > 0 and I is the singularity set of AZ )
together with a contour in

Hznta(CP™ x CP™ — %, L1 2 x L37% - 1;C)

hom e 2% (8)
= Hym-2)(L7 2 x L5372 - 5;C)

T
induces a continuous functional on (6) (see §3.2. in [2]) and hence via n} (and
its analogue for CP™* which we again denote by =) a continuous functional

F,: HYCP?® - £};0(r))® H'(CP* — L£}*; O(r)) — C. (9)
If £37% and £572* are in general position, i.e.

(C3~ ) ney™™ =10, (10)
then V := L7772 x £27%* — T has the topology of
{((2],W]) e CP""% x CP"* | Z*'W; # 0}
which fibres over CP"~2 with contractible fibre C*~2:

cr?2 5 | % > ([Z],[W])

l l | (11)
CcCpP™? > [Z]

so that H,(V; C) = H,(CP"~Z%; C). Therefore there is a unique contour C ~ CP"~2,
[C] € Hy(n—2)(V; C), which associates the functional F, of (9) to the kernel (7).

It remains to be seen that this functional does indeed coincide with the scalar
product: We assume that the field

fr=0"f] € HY(CP’ - £3;0(r)) (12)
1s given as image under the Mayer-Vietoris map 8* of
f? € H°(CP® — H} — H}; O(r)), (13)

where the hyperplanes HZ, H? define £ = H2 N H2, and similarly for g} based
on £3* = HZ* N H}. Then 7} f! = 827%f% (with 8’ defined in the obvious
way) and by theorem 1 of [3], carried over to higher dimensions, F(f}, g}) can

be evaluated as an integral -
[ @@ e b, (2, w) (14)
(51)4xC

~over an (S!)*-bundle. Let for example ng,z) H3", be given by

02, ={[Z]€ CP*| Z =0}, |
W2, = {(W]e cP> | W, =0}, '~ 01 (15)
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and define (S')* x C in these coordinates as

( ([2],[W]) € CP™ x CP™ | 1
[Z] = [(ee*?°, €e*®, raz, raz, V1 — r2ay, ..., V1 — 72a,)),

j [W] = [(ee'¥°, ee*¥?, ras, rds, V1 — rldy, ..., V1 — r2a,)).
a; = r,-e“”"; a2G2 + a3tz = aqd4 + ...+ apd, = 1;

(7,7 €[0,1]; 44,9 € [0, 27]. )

i

(16)

We could now just insert elementary states, based on £}, £3%for f0(Z), g° (W)
to verify agreement with the scalar product on a dense subset (cf.[4]). Alter-
natively, using the fact that =y f2, 75 g? are constant along the fibres of 7, (i.e.
they do not depend on the var iables Z4%,..., Z2"; Wy,..., W,), one can try to
reduce (14) to the familiar CP™ x CP™*-integral which is known to represent
the scalar product in the case » > —4. Integrating out the 2n — 7 variables
2, ..., 12 ¢4, ..., ¢n we are left with

(n+ )t / O(Z)g0 (W) (Z2W, + Z3W,)=D3 ZD3W t=4dt
(n— 4! J(s1)ysxcpixfo,c) (£°Wo + Z1Wi + (t + 1)(Z2W, + Z3W3))ntitr

where t = I{% and (S!)* x CP?! is the standard contour for the scalar product-
twistor diagram in CP3 x CP¥*. n -3 partial integrations w.r.t. t give the
standard integral for this diagram if » > —4. Of course it would be desirable
to establish the n-independence of the functionals F, (9) and other relations
between representatives of functionals in different dimensions (see [1]) in more
abstract terms, probably starting off from [5].

We note however that an increase in dimensions genuinely widens the possi-
bility of representing such functionals by twistor diagrams without boundaries.
Moreover, one could try to accommodate some additional space-time structure
by a more essential use of the extra dimensions.
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Ab bracts

On Bell non-locality without probabilities: some curious geometry

by Roger Penrose,
Mathematical Institute, Oxford, U.K.

Abstract. In 1966, John Bell showed how Gleason's 1957 theorem can be used to
demonstrate the incompatibility of the predictions of quantum theory with "non-
contextual* hidden variable models. Later, Kochen and Specker independently found a set
of 117 (unoriented) spatial directions that exhibited this incompatibility in a finite explicit
way. Such configurations have been used (Heywood and Redhead 1983, Stairs 1983, Brown
and Svetlichny 1990) as part of an EPR system, to show that the non-contextual assumption
can be replaced by one of locality. This, like results obtained recently by Greenberger,
Horne, Zeilinger (GHZ) and others illustrates a conflict between quantum mechanics and
locality that shows up in yes/no constraints on the results of certain idealized experiments,
no probabilities being involved. Kochen and Specker's original set of 117 directions, for a 3-
state (spin 1) system , has recently been reduced to 33 by Peres (1990a) (and to 31 by Conway
and Kochen). Peres has also exhibited a set of 24 Hilbert-space directions, with similar
properties, for a 4-state system, these being the common eigenstates of sets of commuting
operators among a set of 9 found by Peres (1990b) (and Mermin). In this article, I show how
Peres's set of 33 directions can be directly visualized in terms of a geometrical configuration
(three interpenetrating cubes) that appears in the Escher print “Waterfall". Using the
Majorana description of general spin states, I also exhibit a quite different set of 33
idealized measurements that can be performed on a spin 1 system. These measurements are
specified in terms of an explicit set of 18 oriented directions in space. The configuration
involved in Peres's set of 24 Hilbert-space directions can be understood in terms of a 4-
dimensional regular polytope known as the "24-cell”, and they are, in principle, ideally
suited to providing an EPR-type of GHZ non-locality without probabilities. Unfortunately,
if each 4-state system is taken to be a spin 3/2 particle, no simple spatial geometrical
description of the needed measurements seems to emerge. Instead, | provide an alternative
configuration for spin 3/2, based on a regular dodecahedron, in which only 20 oriented
directions are explicitly used.
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Existence and Deformation Theory for
Scalar-Flat Kéahler Metrics on Compact
Complex Surfaces

Michael Singer
Lincoln College,
Oxford

Claude LeBrun* and
SUNY Stony Brook

Abstract

Let M* be a compact complex 2-manifold which admits a Kéhler
metric whose scalar curvature has integral zero. Suppose, moreover,
that 7,(M) does not contain an Abelian subgroup of finite index.
Then if M is blown up at sufficiently many points, the resulting com-
plex manifold M admits Kihler metries with scalar curvature iden-
tically zero. The proof, which proceeds by deforming the explicit
metrics constructed in [27], hinges on a remarkable relationship be-
tween Kodaira-Spencer theory and the Futaki invariant that arises
via the Penrose transform. In the process, we point out a relationship
between the existence problem for scalar-flat Kahler metrics and the
parabolic stability of vector bundles in the sense of Seshadri [38].
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POSITIVE EINSTEIN METRICS WITH SMALL L*2.NORM
OF THE WEYL TENSOR

Michael Singer
Lincoln College, Ozford, U.K.

Abstract: A gravitational analogue is given of Min-Oo’s gap theorem for Yang-Mills fields.

Keywords: Riemannian manifold, Einstein metric, Weyl tensor, LP-norm, Sobolev constant,

Euler characteristic.
MS classification: 53C.
INTRODUCTION
In this note we prove

Theorem 1. Let M be a compact oriented n-manifold (n = 2m > 4) with non-vanishing
Euler characteristic x(M) and let g be a (Riemannian) positive Einstein metric on M with
Weyl curvature W. Then there is a constant € > 0, depending only upon n and x(M),
such that if ||W || es < €, then W = 0 (and so M is isometric to a quotient of S™ with the

standard metric).

The Frohlicher Spectral Sequence on a
| T'wistor Space

Michael G. Eastwood Michael A. Singer

1 Introduction

Associated to any compact self-dual four-manifold M is a compact complex three-
dimensional manifold Z known as its twistor space 1,18]. Twistor spaces provide
a source of interesting complex three-manifolds (cf. [6]). The purpose of this
article is to investigate the Frohlicher spectral sequence 9]

E}" = HY(2,9°) = H™*(Z,C)

where (7 denotes the sheaf of holomorphic p-forms on Z. The Penrose transform
[2,3,4,7,12] interprets the Dolbeault cohomology H9(Z, Q%) in terms of differential
equations on M. In this way, the Fréhlicher spectral sequence has differential-
geometric consequences on M and vice versa.

We shall explain this interpretation and its consequences. For, example we
shall show that E) = E_ if and only if a certain conformally invariant system
of linear differential equations has only constant solutions. The classical case in
which E} = E is when Z admits a Kahler metric. Hitchin [13] has shown that
there are only two such twistor spaces, namely CPj3 and the space of flags in C3,
However, we shall construct other twistor spaces with Ey = E. We shall show
that if E; # E, then E; = E_, and that this possibility does occur.
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