Some new scalar—-flat Kéhler and hyper-K8hler metrics

We know from the work of Claude Lebrun (J.Diff.Geom. 34 (1991) 223-
253) that any scalar-flat Khdhler metric with a Killing vector (or 'S'-
action') arises from a solution udx,y,z) of the equation

Upye + U, + (¥, =0 1

which 1s variously known as the ‘SU(») Toda field equation' or 'Boyer-
Finley equation'. What is more Claude tells us in detail how to go from the
metric to the function u, though given a solution u there is a choice to be
made on the way back to the metric. In particular, given u there is a
choice which leads back to a hyper-Kdhler metric.

Henrik Pedersen and Yat Sun Poon (Class.Quant.Grav.7 (1990) 1707)
found a scalar-flat K&hler metric of Bianchi-type-IX, in the terminology of
relativity. This means that the metric has a 3-parameter group of
isometries, isomorphic to SU(2) and transitive on 3-surfaces. In particular
then the Pedersen-Poon (PP) metric comes from a solution of (1) and it is
possiblérfollow Lebrun's direction to find out which. It turns out that the
PP-metric arises from an ansatz for (1) which has a simple generalisation
to a wider class of solutions of (1). Thus the PP-metric can be generalised
to a wider class of scalar-flat K#hler or hyper-K#hler metrics, and this is
what I want to describe here.

The idea, with the benetit of hindsight, is to seek a solution of (1)
for which u is constant on central ellipsoids. In other words, define u
implicitly by the equation

Qu,x,y,2) = X*MWX =1 2
where X* = (X,y,2z) and M(u) is a (symmetric, positive-definite) matrix
function of u, to be tound. Differentiate (2) implicitly and substitute

into (1), then what remeins is a second-order matrix ODE in u which can be

integrated once. To write the resulting first-order equation out, first
define the 3x3 matrix

g = diag(l,1,e) 3

then the equation we want turns out to be

VM, = MgM 4
using a subscript u to denote d_
du
where V is an integral of
V., = %trace(gM) 5

Because of (5), equation (4) is still quite complicated, but there is a
dramatic simplification if we work with minus the inverse of M:



set N = -M~t' then (4) and (5) reduce to

VN, = g 6

and Vo -%trace(gN~'). 7

From (3) and (6), the off-diagonal terms in N are constant so set

N = [&a v 8
v b A
[T S o

where \,p,v are constants, then (6) in components reduces to the 3
equations

a, = b, = 1/V ; c, = ev/V 9
At once, from (9)
a-b = 2L constant,

where we retain the convention of using Greek letters for constants. Define
a new constant n by

n* = (2 + v2

then a convenient parametrisation, in terms of a new variable w, turns out
to be

a=n(‘ﬂ)+c b=n(u)-'c 10
w-1 w1

Next we note from (7) that
VZdetN = £ constant 11

Our aim is to obtain an equation for w. We solve (10) and (11) for c in
terms of w, V and constants, then eliminate V in favour of w, using (9) and
(10). This gives ¢ in terms of w, w, and constants and then the last part
of (9) gives a second-order ODE for w. A change of independent variable

z = e+ 12

enables this final ODE to be written as

dz2 \2w w-1/1dz dz z= w z w1

d2w=(1 + 1 de2 -1 dw + (w1)3(aw + B) + yw +dwwtl) 13

(&) = v 7 e
where «a,B,y,8 are constants which can be expressed in terms of the
constants which we already have ie A,u,v,E.n.{. Painlevé-buffs will
recognise the ODE in (13) as Painlevé-V (P-V for short), with the usual
conventions. In fact, the constant § turns out to be zero in this case, and

Fokas and Ablowitz (J.Math.Phys. 23 2033 (1982)) explain how to transform
this special case of P-V to P-III.



Given a solution w(z) of (13), we can work our way back to the matrix N and
so to M and to u(x,y,2). To be able to write down a scalar-flat K&hler
metric, we have still to solve a linear PDE, but to write down a hyper-
K&hler metric, there are no more choices to be made: given u(x,y,2) the
metric is immediate. In particular, given the function u(x,y,z) appropriate
to the PP-metric, there is a hyper-K8hler metric with the same u
(apparently a new one, but it won't be ot Bianchi-type-IX unless its
already known!).

The special case of this procedure when the matrix M in (2) is diagonal, or
equivalently when the constants A,p,v in (8) are all zero, is the one which
leads to the PP-metric, which was already known to involve P-III. What is
obscure in this approach is why the PP solution of (1), which must lead to
a scalar-flat K&hler metric with an S'-action, actually leads to a far more
symmetric metric with an SU(2)-action. This raises the possibility that
these more general solutions of (1) also lead to scalar-tlat K&hler metrics
with SU(2)-action., If these exist, and I am grateful to Andrew Dancer for
the suggestion that they do, then their metrics will look like

ds2 = Fdt= + A, ,0'0? 14

where A, is a matrix function of t, and the ¢! are a basis of left-
invariant one-forms for 5®. The question is whether one can relate the
matrix A to the matrix M of (2)., Certainly for the PP-metric, when M and A
are both diagonal and t in (14) is proportional to u, this is possible.

One could also try different generalisations of the ansatz (2): for example
with hyperboloids in place of ellipsoids (ie with an indefinite M{(u) rather
than a positive-definite one) which presumably leads to a Bianchi-type-VIII
metric, or with paraboloids or even with planes (This case, which is fairly
easy to do, leads to a Riccati equation in place of (13)). And, of course,
free with every solution of (1) one obtains a hyper-K&hler metric too.
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