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A ‘twistor transform’ for complex manifolds with connection
by Dominic Joyce, Christ Church.

In this note we will briefly describe the geometry of a class of complex manifolds, to
be called complex-flat manifolds, that have a connection V satisfying a curvature condi-
tion given in §1, which is the curvature condition satisfied by the Levi-Civita connection
of a Kéahler manifold. The structure has a sort of twistor transform: in §2, V will be
used to define an almost complex structure J on the tangent bundle of X, and it will be
shown that J is integrable exactly when the curvature condition holds.

It therefore gives a miniature picture of the Penrose transform for conformal 4-
manifolds, where the Cartan conformal connection is used to define a complex structure
on a bundle, and the integrability condition is a condition on the conformal curvature.
In §3 we give some examples of complex-flat manifolds.

1. Connections, curvature and complex structures

We begin by recalling how to decompose tensors relative to a complex structure
I. Let X be a complex manifold, with complex structure I, which will be written with
indices as I* with respect to some real coordinate system (z?,...,z%"). Let K = K%~
be a tensor on X, taking values in C. Here a is a contravariant index of K, and any
other indices of K are represented by dots. The Greek characters «,3,7,6,¢, and the
starred characters a*, 3*,v*, 6*, ¢*, will be used in place of the Roman indices a,b,c,d, e
respectively. They are tensor indices with respect to (z!,...,z2") in the normal sense,
and their use is actually a shorthand indicating a modification to the tensor itself.

Define K® = (K%~ +iI$K?)/2 and K* = (K® —iI¢K3+)/2. In the same
way, if b is a covariant index on a complex-valued tensor L' , define Ly = (Lj: —
if}L;: )/2 and Ly = (Ly: + iIfL;_'“)/Z Then K% and Ly are the components of
K and L that are complex linear w.r.t. I, and the starred versions are the components
that are complex antilinear w.r.t. I. These operations are projections, and satisfy K% =
K*+K*~and Ly =Ly +Lj. . . The complex decomposition of a real-valued tensor
is self-adjoint. This means that changing round starred and unstarred indices has the
same effect as complex conjugation. All the tensors we deal with will be self-adjoint.

Let V be a torsion-free connection on X satisfying VI = 0. The connection will
be written in the usual way as I'g_, relative to the coordinate system (z!,...,z?"). In
this fixed coordinate system, I' may be decomposed into components relative to I as in
the previous subsection, but as I is not a tensor this decomposition does depend on the
coordinate system. Therefore, we shall consider only coordinate systems (z!,...,z%")
with the property that I is constant in coordinates, i.e. I} /9z° = 0 for all a, b, c.

As VI =0 we have I't, = ', + I'%._, and as V is torsion-free I'¢, = I'%,. Together
these imply that 'y, = I'g, +'Fg:7.. Now the curvature R%, 4 of V is given by R%, ; =
04,/ 0x° — AT'g, /0 + T3}, — 3,0}, Substituting in for T' gives R%, 4 = Ry, +
R . 4

Because V is torsion-free, R satisfies the Bianchi identity R*, ,+ R®, 4, + R%4. =0,
and thus R%g. .5 + R® 5.5+ R%.5.. = 0. But from above the last two terms are zero,
and 8o R%, .;. =0, and similarly R"'ﬁ.ﬁ& = 0. Therefore

Ryea = R%gps + Ry + Ry + R oo + R s + R oo (1)
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Now by [Bo], Lemma 5, the curvature tensor of a Kihler manifold satisfies
Rabcd = Ra.ﬂo760 + Ra.ﬂ..,o(g + Raﬂ;'&o + Raﬂ‘y'&' (2)

So the curvature of the Levi-Civita connection of a Kéhler metric satisfies (2),
whereas the curvature of a torsion-free GL(n,C)- connection V only need satisfy (1),
which is weaker. A torsion-free connection V will be called complex-flat if VI = 0
and its curvature satisfies (2). In fact, as the curvature of V already satisfies (1) it is
necessary and sufficient that it should satisfy the additional condition R*, ;= 0.

2. The twistor transform

Let X be a complex manifold, with complex structure I, equipped with a torsion-
free connection V satisfying VI = 0. The tangent bundle TX of X is naturally a
complex manifold, with complex structure also denoted I. Using V, a second almost
complex structure J will be defined upon the total space of TX, which will turn out to
be integrable exactly when R*; ; = 0. So J is a complex structure if and only if V is a
complex-flat connection.

Let z € X and y € T.X. Then (z,y) is a point in TX. The tangent space
T(z,4)(T X) splits naturally into a direct sum H @V, where H is the horizontal subspace
of the connection V at (z,y), and V is the tangent space of the fibre of TX over z. Now
V is closed under I as T X is a holomorphic bundle, and H is closed under I as VI = 0.
Let v be a vector in T(. ,,)(TX). Under the splitting T(,,,)(TX) = H ® V, we may write
v = (v1,v2). Define Jv = (Iv;, —Iv;) for all vectors v, and for all z € X,y € T X. This
defines an almost complex structure J on the total space of T X, commuting with I and
projecting down to I on X.

We will write J out explicitly in terms of the connection components I, and calculate
the Nijenhuis tensor Nj of J, which will give the condition for J to be integrable.

Let (z!,...,22") be a coordinate system as in §1, for some open set U C X. Let
..., ) be coordjnates w.r.t. the basis (8/9z!,...,8/8z%") for the fibres of TU.
Then (z!,...,2%",y!,...,9?") are coordinates for TU. In these coordinates, J is
0 0 0 0 d
J a b a b dpa b c_.
( dz* +e oy ) bF Gza T b4 oyt — 2L T Byd

Decomposing this expressmn w.r.t. I leads to some simplifications, as we may use
the facts that I'y, =T'g, + Fﬂ. . and I =163 — z6ﬂ.. So we have

J a+ 0N _ipo 0 i O e 0 Ly O
P e T o ) T gga T g T ga T G
.o a . ao - - a

- 2:Fg,,yﬁp7—a;; + 211-‘5..1.1/’3 p" W

Theorem. The almost complez structure J is integrable if and only if R%; ;= 0.

Proof. By the Newlander-Nirenberg theorem, a necessary and sufficient condition for
the integrability of J is the vanishing of the Nijenhuis tensor N, of J, which is given
by Ny(v,w) = [v,w] + J([Jv,w] + [v,Jw]) — [Jv,Jw]. We shall evaluate N; with
v = p*0/0z*+¢*3/dy* and w = r*0/0x*+3°3/0y*, where p*, ¢, r* and s® are constants
independent of °,y°. It is easy to see that [v,w] = 0. Using the fact that J acts as —I
on V, one calculates that
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org b 61" ~ b " b
J([Jv,w]) =2rd——€,1yﬂp“’—; +2 aﬁd p By + 2T s%p 5y
BI‘ . d
— Y — B ~+* — a b._c
J([v, Jw]) = 2p 6 yﬂr ay“ 2p? 954 LAy e g’r oy’
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a . a a . . [ . a
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Combining the above gives

3 - L] - a
Ny(v,w) = 4R" ﬂvwﬂr"P e TARY oyt 110" 5

CX.’

using the expression for R in §1. As this holds for all v, w and y° for each fixed z, N; =0
identically if and only if R*;_; = 0. ]

3. Examples

The simplest examples of complex-flat manifolds are Kihler manifolds, taking V
to be the Levi-Civita connection of the Kahler metric. However, there are many other
examples of complex-flat manifolds with no compatible Kahler metric. We shall comment
briefly on three such families. Firstly, using the work of [J] for hypercomplex manifolds
it is possible to define a quotient construction for complex-flat manifolds analogous to
the Kahler quotient. Starting with a flat complex-flat structure one may produce non-
Kihler complex-flat structures by choosing a moment map not compatible with any
Kéhler metric.

Another way of constructing examples is to consider complex submanifolds of complex-
flat manifolds. To induce a connection on the tangent bundle of a submanifold M of X
we need a splitting TX |y = TM @V for some vector bundle V; for the induced connec-
tion to be complex-flat, it turns out that V' must be a holomorphic subbundle w.r.t. J. In
the case, say, of projective varieties in X = CP", there may be many different choices of
V satisfying this condition, and each will give a distinct complex-flat connection on M.

Our final family of examples are hypercomplex manifolds. A hypercomplex manifold
is a manifold M*" with complex structures I, I; and I3 satisfying I I, = I5. By [S], §6,
there is a unique connection V on M called the Obata connection, that is torsion-free
and satisfies VI; = 0. We shall show that V is a complex-flat connection for each of the
complex structures Iy, Iy, I3. Thus hypercomplex manifolds are examples of complex-flat
structures that in general do not come from Kahler structures.
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Proposition. Let M and V be as above. Then the curvature R*,_, of V satisfies
R*5 s = 0 in the complex decomposition with respect to each compler structure I;. Thus
(M,I;,V) is a complez-flat manifold.

Proof. We shall prove the result for I, for by symmetry it then holds for I, I3. As V
is torsion-free and VI; = 0, from §1 the curvature R satisfies R*, ; = R%; 4+ R* 5.,
in the complex decomposition w.r.t. I, and so R%,_, = —(12)‘]?(12):Rjkcd. Also, from §1
the component R* 8ey6 is zero in the complex decomposition w.r.t. I;. Therefore

0=(1-1h) (1 +ih)j(1 - il)c(1 —il1)3RP,,,
= (1 —ih)p(L+il){(1 - if)(1 - il)4(L)i(L)s Ry,
= (L)} (I)s (1 +il)5(1 — sh)i(1 —ify); (1 - il)3RP,,,,
where 131, = —1I,1; is used in the last line. So

1 . a . . r . a [« 3
E(l + ‘Il)p(l — 'Il):(l - 111)‘:(1 - "Il)dqurl =R BvE = 0 (3)

in the complex decomposition w.r.t. I;, which is the condition for (I;, V) to be a complex- -
flat structure on M. ]

Thus the results of §2 apply to hypercomplex manifolds, and lead to some new
ideas about the Obata connection and complex structures on the tangent and cotangent
bundles of a hypercomplex manifold.
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