18

On the symmetries of the reduced self-dual
Yang-Mills equations

L. J. Mason

Introduction

One of the remarkable features of reductions of the self-dual Yang-Mills equa-
tions to systems in two dimensions is that the symmetry group of the reduced
equations (in the context of space-time symmetries) is much larger than one
might have expected, often being infinite dimensional. A priori, one would
expect the symmetry group of the reduced equations to be just the projection
of those conformal symmetries in 4-dimensions that normalize the invariance
group that one is reducing by. In Hitchin (1987) it was observed that the
reductions of the self-dual Yang-Mills equations on Euclidean 4-dimensional
space by two translations are actually conformally invariant in the infinite
dimensional sense in the residual 2-dimensional space (a priori one would
only expect the equations to be invariant under the 2-dimensional Euclidean
group plus scalings). In Mason & Sparling (1992) it was observed that reduc-
tions of self-dual Yang-Mills by 2 translations spanning a 2-plane on which
the metric has rank one also has an infinite dimensional symmetry group at
least when the gauge group is SL{2)—nonlinear analogues of the Galilean
group in so called (1 4+ 0)-dimensions as opposed to just the linear Galilean
group in 2-dimensions..

The purpose of this note is to clarify the geometry underlying this result
and state it independently of the gauge group. I also discuss two other exam-
ples of this phenomena, one being the reduction by symmetries spanning a
totally null ASD 2-plane where the symmetry group is the whole diffeomor-
phism group (rather than just GL(2)), and the other being the reduction by
two rotations (or a rotation and a translation) in which the symmetry group
is the hyperbolic group in 2-dimensions (SL(2,R)).



An important corollary of Hitchins result is that it makes it possible to
transfer the equations to a general Riemann surface where they consider-
ably enrich the theory of holomorphic vector bundles. The above results
give alternate ways of transferring different reductions of the self-dual Yang-
Mills equations to 2-dimensional surfaces endowed with different geometric
structures.

The Yang-Mills Higgs equation on a Riemann surface

First a brief review of Hitchin’s equations. We will use (2, w, z, W) as coordi-
nates on R* that are independent and real for signature (2,2) or complex with
z = z etc. for Euclidean signature. We start with the Lax pair formulation
of the self-dual Yang-Mills equations.

The self-dual Yang-Mills equations are the compatibility conditions for
the pair of operators:

Lo=D,- Dy, Ly =D, + AD;.

where A € C is an auxilliary complex parameter and D, is the covariant
derivative of some Yang-Mills connection in the direction 3/9z.

For Hitchin’s equations we start in Euclidean signature and impose sym-
metries in the 9/0w and 8/0w directions. In an invariant gauge (i.e. one in
which the gauge potentials are independent of (w, %), D, = 8/0w + ' and
cc. and we can throw away the derivatives with respect to (w, %) to leave the
pair of operators (with a litte rearrangement):

Lo=D,— AV, L =D, + %6'.

We can make this more geometric by multiplying Lo by dz and L, by dz and
defining ® = ¢'dz. We then obtain the form valued operator:

L=dzL0+dEL1=D—)‘<I>+§&>.

The Yang-Mills Higgs equation on a Riemann surface are the consistency
conditions for these operators:

D*=dAd, D&=0, DO =0.
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Where D is the covariant exterior derivative. These equations are invariant
under the conformal group in two dimensions as they only require a bundle
with connection and a complex structure to define ® and ®. One solution
will be transformed to another if z — 2/(z) and ® and D pull back.

Alternatively, these equations depend only on the x—operator on 1-forms
on the quotient space of the symmetries. The data consists of a connection
D on a bundle, E and a section T' = & + ® of ' ® End(E). The operator
Lis

L=D+(—/\l_” 1+”)F.

2 + 2\

So the field equations arising from the consistency conditions of this operator
are invariant under the diffeomorphisms preserving *, i.e. the conformal
transformations in 2-dimensions.

The Galilean analogue

If, in (2,2) signature, we impose one null symmetry along 0/0w and one
non-null symmetry along 8/0z — 0/0% we obtain the Lax pair:

Lo=D, - 20, Ly =D, + AD: + ¥)

where z = (2 + z) and we have reorganized the covariant derivative in the
z direction to include part of the Higgs field associated to the symmetry in
the J, — 0; direction. We can again perform the above trick, multiplying Lo
by dr and L; by dw to and adding together to obtain

L=dxlLo+dwly =D + AT + dwD,)

where ' = —®dz + Udw. To write this more geometrically, we introduce
a degenerate *—operator that can be thought of as a map from 1-forms to
1-forms:

* =dw—, ar aofz")dw.

dz’ Oz

The operator L then becomes:
L =D+ AxD +T).

The field equations arising from the consistency equations for this system
are:

D*=0, D' =0, D*T"+T AT =0
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where D above is acting as the covariant exterior derivative so that the
equations are all 2-form equations. Geometrically these equations determine
a flat connection D on a bundle £, together with a section I of Q' ® End(E).

It is clear, now, that the field equations arising from the consistency
conditions for this operator will be invariant under diffeomorphisms of R?
preserving the degenerate »—operator, dw ® 0/0z. These are the nonlinear
Galilean transformations referred to previously:

(w,z) = (v',2) = (h(w), (Guh{w))z + g(w))

where h(w) and g(w) are free functions except that d,h # 0.

These equations embed the nonlinear Schrodinger and KdV equations
and most of their generalizations to higher rank gauge groups (the Drinfeld
Sokolov hierarchies etc.) into a galilean invariant system. At least in the
SL(2) case, this coordinate freedom is completely fixed by the reduction to
KdV and NLS.

The totally null case

In the case where the symmetries span an anti self-dual null 2-plane we
obtain the linear system
L=D+ Al

where again D is a flat connection on a bundle E and [' is again a section of
Q' ® End(E). The field equations are now:

D*=0, DI'=0, TAT =0.

These equations are now invariant under the full 2-dimensional diffeomor-
phism group (preserving the ‘zero’ *-operator).

These equations are therefore ‘topological’ and indeed are another way
of writing the Wess-Zumino-Witten equations (Strachan 1992). Their reduc-
tions include the n-wave equations and those parts of the Drinfeld-Sokolov
hierarchies not obtainable from the Galilean reductions. These further re-
ductions require that their exists coordinates and a gauge in which the com-
ponents of I' are constant. In the SL(3) case one can fix the coordinate
freedom by using these additional conditions.
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Stationary axisymmetric systems

In Fletcher & Woodhouse (1990) it was observed that the reduction of SDYM
by 2 rotations gave the same field equations as the reduction by a translation
and a rotation. ‘This fact alone endows the 2 rotation reduction with one
unexpected symmetry, the residual translation symmetry. However, more is
true. These equations are invariant under SL(2,R) the group of motions of
the residual space preserving a hyperbolic metric. While this was in some
sense clear from the reduced twistor correspondence in Woodhouse & Mason
(1988), it was difficult to see on space-time.

To see this we impose a rotational invariance with respect to 8 in the
w = yexp(:0) plane and set = 2z + z and impose a symmetry in the 9, — 0;
direction. We obtain the linear system:

D, —iA+ Ae*(D, + i(a‘, - B)), (D, - 5(59 — B)) = MD, + iA).

We cannot just throw away the 9y as there is explicit dependence on @ in the
operators. This is connected with the fact that the Lie derivative of a spinor
and hence X along 0y is not zero. To work independently of § and to avoid
derivatives with respect to the ‘spectral parameter’ we must use, instead of
A the parameter ,
_ ye'’ A b Y
2 2e A
as this the simplest function on the spin bundle that is both invariant and
constant along the twistor distribution.

If we introduce the complex coordinate ¢ = z + 1y, a bit of massage yields
the following form for the linear system:

9 .Iv—f i il i
¢+ 7_E(A+yB), 2D¢ +1 ‘Y"E(A yB)

In order to bring out the invariance properties of this system, we can first
of all multiply the first operator by dé and the second by d¢é and add them
together. Then introduce homogeneous coordinates y4 = (70, 11) with vy =
T /7 and similarly for £4. Define 4 to be the componentwise complex
conjugate of {4 and denote the skew product 11§ — €170 = 7-&. The linear
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system then reduces, after some further massage, to:

7€ 7-€
d 2
oy Syl B R e

where we have put @ = (\/yA +1B//y)/éo.

It can now be seen that the linear system is invariant under SL(2,R);
the Mobius transformations on £4 preserving the reality structure {4 — §a
and hence the hyperbolic metric € - d€ ® £ - d€/(i€ - £)®. The integrability
conditions are equations for a connection D on a bundle £ and a section
® € I'(O(-1)® E) that is a dual spinor valued section of End(FE).

The field equations are

2D +1 ®f - dé

E-dENE-dE i) - ¢
, 00 =——, 00 = ———
=027 % ¢ %2

where 9 and 0 here denote the ‘eth’ operator and its complex conjugate, the
(0,1) and (1,0) parts of the covariant derivative respectively.

So the ‘Higgs fields’ ® and @ together constitute a Dirac field and satisfy
the background coupled massive Dirac equation. Their commutator provides
the curvature of the connection.

Remarks

Just as in Hitchin’s case, one might hope to be able to transfer the other
equations above to a Riemann surface also.

For the Galilean analogue, instead of endowing the Riemann surface with
a complex structure, one might endow it with a measured foliation which
corresponds to a limit of a complex structure (i.e. the space of measured
foliations modulo certain equivalence relations is a good boundary for Teich-
muller space). It turns out that this is nof the same concept as the degenerate
x-operator introduced above. They both determine a foliation of the Rie-
mann surface, but the degenerate *-operator has an affine structure on the
leaves, but no structure transverse to the leaves, whereas the measured foli-
ation has a measure transverse to the leaves, but no structure on the leaves.
Nevertheless, one might hope that one could prove an equivalence between
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the two, modulo diffeomorphisms in the global context as a kind of uni-
formization result. Even if this is feasible, it is still perhaps not clear that
one can obtain a good existence theory for solutions of this equation as the
linearized analogues of these equations have *I' covariant constant along the
leaves of the foliation, a condition that will have no solutions when the leaves
are dense.

Further analysis is required for the other cases. The totally null reduction

will presumably not give rise to any difficulty as the equations are underde-

“termined anyway. This leaves the Hyperbolic case for which more analysis is
required.

Thanks to Jorgen Andersen for conversations.
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