Twistor description for Weyl's class of type D vacuum space-times

Thomas von Schroeter

In his article in TN 34, Nick Woodhouse derived the patching matrix for the Ward transform of the general anti-self-dual type D vacuum metric, the essential component of which turns out to be rational of degree 2 in a single complex variable w. As we know from other previously calculated examples, a simple form of the patching matrix in terms of rational components of low degree is also a characteristic feature of the real type D vacuum solutions.

In this note, I shall describe how, for the Weyl solutions among the type D vacuum metrics—i.e. the ones which can be given in the form

$$ds^{2} = f(z,r)dt^{2} - \frac{r^{2}d\theta^{2}}{f(z,r)} - \Omega^{2}(z,r)\left(dz^{2} + dr^{2}\right)$$
 (1)

our observation can be shown to arise from the existence of a Killing spinor of valence 2 - that is, a spinor field X_{AB} such that

$$\nabla_{A'(A}X_{BC)} = 0. (2)$$

As this is true for all type D vacuum space-times (Walker & Penrose 1970), we expect that we will be able to generalize the argument given here.

Our strategy is to use the Yang-Mills twistor description of stationary axisymmetric vacuum space-times (Fletcher & Woodhouse 1990), in which the space-time M splits into a product of the orbits of the two Killing vectors $\partial/\partial t$ and $\partial/\partial \theta$ and a two-dimensional manifold Σ with co-ordinates (z,r), the space of orbits. For the metric (1), the patching matrix is simply P(w) = diag(1/f(w,0), f(w,0)) and thus all we need to determine is the restriction of f to the axis (or horizon), $\{r=0\}$. If we write $J = \text{diag}(-r^2/f, f)$ for the induced metric on the space of Killing vectors (i.e. $T\Sigma^{\perp}$), equation (2) translates into

$$F = i * F, \tag{3}$$

$$dA = -\frac{3}{2}A \wedge J^{-1}dJ, \tag{4}$$

$$D_{(\alpha}A_{\beta)} = \frac{1}{2}A_{(\alpha}J^{-1}\partial_{\beta)}J - \Omega^{2}\xi \,\delta_{\alpha\beta}$$
 (5)

where $F_{ab} = \epsilon_{A'B'} X_{AB}$ and $A = A_{\alpha j} dx^{\alpha}$ is the one-form on Σ with values in the dual of the space of Killing vectors that corresponds to X_{AB} via

$$(F_{ab}) = \begin{pmatrix} 0 & A_{\alpha j} \\ -A_{\alpha j} & 0 \end{pmatrix}.$$

Here, the matrix decomposition corresponds to the splitting $TM = T\Sigma^{\perp} \oplus T\Sigma$, *F is the 4-space dual of F, d and D are, respectively, the operators of exterior and covariant differentiation on Σ , the indices α and β label elements of $T\Sigma$, j those of $T\Sigma^{\perp}$ and ξ is a complicated expression in J, A and DA with no further relevance for our purpose. (Note that (3)-(5) remain true also in the general case where J is no longer diagonal.)

If we satisfy (3) by putting

$$A = \left(-\frac{\mathrm{i}r}{f} * \beta, \beta\right)$$

with $\beta =: \Omega^2 \sqrt{f}$ (udz + vdr) a one-form on Σ and $*\beta$ now denoting its two-space dual on Σ , then (5) implies that h(w) := u + iv is holomorphic in w = z + ir, and (4) is equivalent to

 $d\left(f^{-3/2}\beta\right) = 0$ and $d\left(r^{-2}\sqrt{f}*\beta\right) = 0$.

As these equations are real, the real and the imaginary part of β will satisfy them too, and thus u and v can be taken to be real functions. As a consequence of the vacuum field equations, the conformal factor is related to f by

$$-\mathrm{i}\partial_{\omega}\log\left(\Omega^{2}f\right)=r\left(\partial_{\omega}\log f\right)^{2},$$

and since J is a solution of Yang's form of the ASDYM equations, $\lambda = \log f$ has to satisfy

$$\lambda_r + r \left(\lambda_{zz} + \lambda_{rr} \right) = 0$$

(Fletcher & Woodhouse 1990).

Finally, eliminating Ω and h and expanding f near the axis (or horizon), one obtains a remarkably simple ODE for $f_0(z) := f(z,0)$, namely

$$3f_0^{(4)}f_0'' - 4\left(f_0'''\right)^2 = 0$$

of which the general solution can be reduced to

$$f_0(z) = \begin{cases} az^{-1} + b + cz & \text{if } f_0''' \neq 0 \\ dz^2 + e & \text{if } f_0''' = 0 \end{cases}$$

by using the freedom $z\mapsto z+$ const. (here, a,b,c,d and e are real constants). As a constant overall factor in f can be absorbed into dt and $d\theta$, one should think of both sets of parameters as homogeneous co-ordinates labelling a projective space of solutions, which is two-dimensional in the case $f_0'''\neq 0$ and one-dimensional in the case $f_0'''=0$.

Examples:

• Flat space with time translation and rotation:

$$\mathrm{d}s^2 = \mathrm{d}t^2 - r^2 \mathrm{d}\theta^2 - \mathrm{d}r^2 - \mathrm{d}z^2$$

and hence $f \equiv 1$, $\Omega \equiv 1$, thus a = c = 0, b = 1.

• Schwarzschild space-time with time translation and rotation:

$$ds^{2} = \left(1 - \frac{2m}{R}\right)dt^{2} - \left(1 - \frac{2m}{R}\right)^{-1}dR^{2} - R^{2}\left(d\psi^{2} + \sin^{2}\psi d\theta^{2}\right).$$

The Weyl co-ordinates are $z=(R-m)\cos\psi$ and $r=\sqrt{R^2-2mR}\sin\psi$ and one finds $a=-2m,\ b=1,\ c=0.$

• Kinnersley's metric IV A (Kinnersley 1969) can be transformed to

$$ds^{2} = (x^{2} + a^{2}) \left[Cv^{2}dt^{2} + 2dtdv \right] - \frac{1}{2}\Delta^{-1}dx^{2} - 2\Delta d\theta^{2}$$

where

$$\Delta(x) = \frac{2mx + C(a^2 - x^2)}{2(x^2 + a^2)}.$$

As $r = v\sqrt{2C\Delta(x^2 + a^2)}$ and z = v(Cx - m), v = 0 is just a single point on Σ and, in order to evaluate f on $\{r = 0\}$, we have to put $\Delta = 0$. We obtain

$$d = \frac{2}{C} \left(1 + \frac{m}{\sqrt{m^2 + C^2 a^2}} \right)$$
 and $e = 0$.

• The vacuum C metric (Ehlers & Kundt 1962). Kinnersley & Walker (1970) give it in the form

$$ds^{2} = A^{-2}(x+y)^{-2} \left(F dt^{2} - F^{-1} dy^{2} - G^{-1} dx^{2} - G d\theta^{2} \right)$$

where

$$F(y) = -1 + y^2 - 2mAy^3$$
 and $G(x) = 1 - x^2 - 2mAx^3$.

One finds $r = A^{-2}(x+y)^{-2}\sqrt{FG}$ and $z = A^{-2}(x+y)^{-2}[mAxy(y-x)-xy-1]$. The patching matrix can be adapted to different parts of $\{r=0\}$. For the physically relevant one, Fletcher (1990) found

$$a = 2$$
, $b = -\frac{2m}{A}(\beta_1 + \beta_2)$, and $c = \frac{m^2}{A^2}\beta_1\beta_2$,

where β_1 and β_2 are roots of F and G (both polynomials have the same roots and all three of them are real provided $m^2A^2 < 1/27$).

It is not yet clear to me what the most general case with $f_0''' = 0$ (i.e. d and e arbitrary) corresponds to.

References

Ehlers, J. & Kundt, W. (1962), in: L. Witten (ed.), Gravitation: An introduction to current research. Wiley, New York.

Fletcher, J. (1990), D. Phil. Thesis, Oxford.

Fletcher, J. & Woodhouse, N.M.J. (1990), in: T. N. Bailey & R. J. Baston (eds.), Twistors in Mathematics and Physics. London Mathematical Society Lecture Note Series 156, Cambridge University Press.

Kinnersley, W. (1969) J. Math. Phys. 10, 1195.

Kinnersley, W. & Walker, M. (1970), Phys. Rev. D2, 1359-1370.

Walker, M. & Penrose, R. (1970), Commun. Math. Phys. 18, 265-274.