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Twistor description for Weyl’s class of type D vacuum
space-times

Thomas von Schroeter

In his article in TN 34, Nick Woodhouse derived the patching matrix for the Ward
transform of the general anti-self-dual type D vacuum metric, the essential component
of which turns out to be rational of degree 2 in a single complex variable w. As we
know from other previously calculated examples, a simple form of the patching matrix
in terms of rational components of low degree is also a characteristic feature of the real
type D vacuum solutions.

In this note, I shall describe how, for the Weyl solutions among the type D vacuum
metrics i.e. the ones which can be given in the form
. , ride? .
ds? = f(z,7)dt? — ——— — Q¥(z,7) (d2® + dr? (1)
e S
our observation can be shown to arise from the existence of a Killing spinor of valence
2 - that is, a spinor field X4 such that

VauaXse)=0. (2)

As this is true for all type D vacuum space-times (Walker & Penrose 1970), we expect
that we will be able to generalize the argument given here.

Our strategy is to use the Yang-Mills twistor description of stationary axisymmetric
vacuum space-times (Fletcher & Woodhouse 1990), in which the space-time M splits
into a product of the orbits of the two Killing vectors d/dt and 3/38 and a two-
dimensional manifold ¥ with co-ordinates (z,r), the space of orbits. For the metric
(1), the patching matrix is simply P(w) = diag(l/f(w,0), f(w,0)) and thus all we
need to determine is the restriction of f to the axis (or horizon), {r = 0}. If we write
J = diag(~r?/f, f) for the induced metric on the space of Killing vectors (i.e. TE4),
equation (2) translates into

F o= ixF, (3)
dA = -34AAJ7'dY, (4)
D(QAB) = %A(‘,J"Gp)J - sz 50;3 (5)

where Fuy = e4p' Xap and A = A,;dz” is the one-form on T with values in the dual of
the space of Killing vectors that corresponds to X 45 via

(Fap) = (—2011' A(;'j ) :

Here, the matrix decomposition corresponds to the splitting TM = TEL @ TS, »F is
the 4-space dual of F', d and D are, respectively, the operators of exterior and covariant
differentiation on ¥, the indices a and f label elements of TY, j those of TE* and £
15 a complicated expression in J, A and DA with no further relevance for our purpose.
(Note that (3)-(5) remain true also in the general case where J is no longer diagonal.)
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A= (-5 99)

with 8 =: 0%\/f (udz + vdr) a one-form on £ and *8 now denoting its two-space dual
on ¥, then (5) implies that h(w) := u + iv is holomorphic in w = 2 + ir, and (4) is

equivalent to
d(f8) =0 and d (r-2\/} */3) = 0.

As these equations are real, the real and the imaginary part of 3 will satisfy them too,
and thus u and v can be taken to be real functions. As a consequence of the vacuum
field equations, the conformal factor is related to f by

~10,, log (sz) =r(dylog f)*,

and since J is a solution of Yang's form of the ASDYM equations, A = log f has to
satisfy

If we satisfy (3) by putting

’\r + r('\u + ’\rr) =0
(Fletcher & Woodhouse 1990).

Finally, eliminating  and h and expanding f near the axis (or horizon), one obtains
a remarkably simple ODE for fo(2) := f(2,0), namely

3671 - 4S5 =0
of which the general solution can be reduced to

folz) = az’lV 4 btez M f'#0
N7 1 dt e if fo' =0

by using the freedom z +— z + const. (here, a,b,c,d and e are real constants). As a
constant overall factor in f can be absorbed into dt and d#, one should think of both

sets of parameters as homogeneous co-ordinates labelling a projective space of solutions,

which is two-dimensional in the case fj’ # 0 and one-dimensional in the case fJ’ = 0.

Examples:

e Flat space with time translation and rotation:
ds? = dt? — r2d6? — dr? — d2?
and hence f =1, Q=1 thusa=c=0,b=1.

e Schwarzschild space-time with time translation and rotation:
2 2m 2 2m\"t o, 2 2, 2 2
ds :(l——)dt —(1——1—2-) dR? - R* (dy* + sin® d6?) |

The Weyl co-ordinates are = = (R — m)cosy and r = vV R? — 2m R siny and one

findsu=-2m. b=1,¢c=0.
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e Kinnersley’s metric IV A (Kinnersley 1969) can be transformed to
ds? = (27 + a?) [Cv2dt? + 2dtdv] — §A7 da? — 24467
where

2 C(a? - 1*
Az) = m$2'(+'3:2 _(*_aa2) r)

As 1 = v\/2CA(z? + a?) and z = v(Cz — m), v = 0 is just a single point on X
and. in order to evaluate f on {r = 0}, we have to put A = 0. We obtain

d——2—(1+——m—) and e =10
=\t Vo '

e The vacuum C metric (Ehlers & Kundt 1962). Kinnersley & Walker (1970) give

it in the form

ds? = A}z +y)2 (Fde* — F~'dy* - G™'da? - Gde?)
where _

Fly)= -1+3°—2mAy® and G(z) =1 — 2 — 2mAz>.

One finds r = A~*(z+y)"2VFG and z = A"}z +y) *[mAzy(y~x)—zy—1]. The
patching matrix can be adapted to different parts of {r = 0}. For the physically
relevant one, Fletcher (1990) found

2 m?
a=2, b===C(Bi+pa), and e= "5 hib,

where 4, and /3, are roots of F and G {both polynomials have the same roots and
all three of them are real provided m?A? < 1/27).

It is not yet clear to me what the most general case with fg’ = 0 (i.e. d and ¢
arbitrary) corresponds to.
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