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Metrics with SD Weyl tensor trom Painleve-VI

In a Comment published last year (Class.Quant.Grav.8 (1891) 1049), I wrate
down an autonomous system of six ODEs, any solution of which determines a
diagonal Bianchi-type-IX metric with a self-dual (SD) Weyl tensor and
vanishing scalar curvature. Call these halt-contormally-tlat, scalar-flat
metrics. This class of metrics includes vacuum examples, scalar-tlat K&hler
examples and a class conformally related to some Einstein metrics with non-
zero scalar-curvature. At Roger's birthday meeting last year, I described
how this system could be boiled down to a single, second-order non-linear
ODE which Chazy (Acta Math.34 (1911) 317) in a throw-away aside asserted
was a 'transformée algebrique' of Painlevé-VI 'curieuse en raison de son
élegance’'. I can now, with help from Fokas and Ablowitz (J.Math.Phys.23
(1982) 2033), see how to do this transtormation and this is what I shall
describe here.

It the Bianchi-type-IX metric is written in the usual way as

ds? = W,003dt7T + 02050,%F + 00,022 + ©,0,05% 1
W,y W W3

where each w, is a function only of ‘time' t,then the autonomous system
which I had is

W, = ~wxey + w,(a; + ay)
W2 = —Ws0, + wWo(ay + a8,) 2
B3 = ~w,0z t 0g(a, + az)
3, = —aza8; + a,(a; + ay)
az = —ax8, + ax(a, + a,) 3
83 = ~a,a + ag(a, + az)

where a dot denotes d/dt.

The second trio of equations is discussed by Ablowitz and Clarkson (in
*Solitons, Nonlinear Evolution Equations and Inverse Scattering’ LMS
Lecture Note Series 149) and called by them the 'Chazy system' following
the solution given by Chazy (C.R.Acad.Sci.150 (1910)456). It was also
solved by Brioschi (C.R.Acad.Sci. t.XCII (1881) 1389) and I will describe
his method here.

First introduce X,Y by
X‘—'a1-a2 Y=a3-a| 4a

now take the differences between successive pairs of the equations in (3)
to find

d;=k+Y. °2=? ay =
22X + Y) 2Y 2

4b

> ><e

Introduce a new dependent variable x by



Y:;( 5a

when 1t follows from (3) that

X = X 5b
2C1-x)

and from (4b) and (5) that

o s g -k i)
2\ x x 1-x
°2=ll2.-.8.)
2 \x X
a; =

l(i + i«_)
2\x 1-x
What is left of (3) is the 3rd-order ODE for x(t):

Xx 2x2 2 \x= x(1-%) (1-%)=

i=3.i2-g=(1+ 1 +_1__) 6

This is the equation satisfied by the reciprocal of the Elliptic Modular
Function. (Chazy's solution of the system (3) led to what Ablowitz and
Clarkson call the Chazy equation, which in turn is solved by a ratio of
hypergeometric functions.)

We have solved (3). To deal with (2), we define new variables Q, by

0, = 20, (XY)'72 ; ap = 20X (X+Y)) V72 ; @y = 205 (Y(X+Y)) 72 7

These definitions are motivated by consideration of (4b). When we
substitute (7) into (2) we obtain the new system:

=2Q2045 (X+Y)
~2Qx0, Y
-202,02X 8

0
N
ot n

The difficulty with (8) is the presence of X and Y. With the aid of (5), we

now change the independent variable from t to x. Using a prime for d/dx, we
find (8) beconmes

Q7 = =0;0, i 07 = -0,0, ; Qs = -0, 9
x(1-%) X %

This system has arisen elsewhere in connection with integrable systems:
Fokas et al (Phys.Lett. A115 (1986) 329) obtain it from a 3-wave
interaction, which is known to be a reduction of SD Yang-Mills, and
Dubrovin (Functional Analysis and its Applications 24 (1990) 280) obtains
it from the equations for a 3-dimensional diagonal metric to be flat.



Before solving (9), we write the original metric (1) in terms of the @,
making use of (5) and (7). The result is

ds2 = 0,020,§ dx? + 0, + U-x)og* + X0~ 10
x(1-x) x(1-x) 0‘2 022 ng

The part in square brackets strongly resembles the conformal metric given
by Nigel Hitchin in his seminar in Oxford last year (15/10/91) and obtained
by him via a direct twistor-space-construction of Einstein, half-
conformally-flat Bianchi-type-IX metrics. The conformal factor in (10) can
be viewed as the factor necessary to make the scalar curvature vanish.

The system (9) has a first-integral namely
0,2 + 0,2 - 0,2 = 2y, constant 11

which 1s the residue of & more-complicated looking first-integral of the
original combined system (2,3) which can be obtained by working back from
(11) through (4a) and (7).

Using the first-integral, it is relatively straightforward to reduce the
system (9) to a second-order non-linear ODE for, say, Q3. The problem is
that this ODE is quadratic in the second-derivative of Qi and so cannot be
one of the Painlevé equations. It is this ODE which is given by Chazy, as
described in the first paragraph, and this is where I was stuck until I
came across the paper of Fokas and Ablowitz. By following their procedure
one is led, after some calculation, to make a change of independent
variable to z via the transformation

X = 4/z 12
(1+/2)=

and then to express Q3 in terms of a new dependent variable v via the
transiormation

Qy = 2v, - v -1 ¢ z 13
v 2(z-1) 2 2v(z-1)

The remarkable thing is that now v satisfies Painlevé-VI (as given eg by
Ince or by Ablowitz and Clarkson) with the parameter values (a,B,y,8) =
(1/8,-1/8,v, (1-243/2) with y as in (11), and in fact (13) can be inverted
so that all solutions of (9) arise this way.

Fokas and Ablowitz, and also Dubrovin give some particular solutions of
Painlevé-VI in terms of solutions of hypergeometric functions. Reversing
the above, these will lead to particular metrics,

It should be possible, following the lead of my other article in this issue

of Twistor Newsletter, to find non-diagonal generalisations of (1) in terms
of Painlevé-VI with more general values of the parameters.

Paul Tod

1)



Some new scalar—-flat Kéhler and hyper-K8hler metrics

We know from the work of Claude Lebrun (J.Diff.Geom. 34 (1991) 223-
253) that any scalar-flat Khdhler metric with a Killing vector (or 'S'-
action') arises from a solution udx,y,z) of the equation

Upye + U, + (¥, =0 1

which 1s variously known as the ‘SU(») Toda field equation' or 'Boyer-
Finley equation'. What is more Claude tells us in detail how to go from the
metric to the function u, though given a solution u there is a choice to be
made on the way back to the metric. In particular, given u there is a
choice which leads back to a hyper-Kdhler metric.

Henrik Pedersen and Yat Sun Poon (Class.Quant.Grav.7 (1990) 1707)
found a scalar-flat K&hler metric of Bianchi-type-IX, in the terminology of
relativity. This means that the metric has a 3-parameter group of
isometries, isomorphic to SU(2) and transitive on 3-surfaces. In particular
then the Pedersen-Poon (PP) metric comes from a solution of (1) and it is
possiblérfollow Lebrun's direction to find out which. It turns out that the
PP-metric arises from an ansatz for (1) which has a simple generalisation
to a wider class of solutions of (1). Thus the PP-metric can be generalised
to a wider class of scalar-flat K#hler or hyper-K#hler metrics, and this is
what I want to describe here.

The idea, with the benetit of hindsight, is to seek a solution of (1)
for which u is constant on central ellipsoids. In other words, define u
implicitly by the equation

Qu,x,y,2) = X*MWX =1 2
where X* = (X,y,2z) and M(u) is a (symmetric, positive-definite) matrix
function of u, to be tound. Differentiate (2) implicitly and substitute

into (1), then what remeins is a second-order matrix ODE in u which can be

integrated once. To write the resulting first-order equation out, first
define the 3x3 matrix

g = diag(l,1,e) 3

then the equation we want turns out to be

VM, = MgM 4
using a subscript u to denote d_
du
where V is an integral of
V., = %trace(gM) 5

Because of (5), equation (4) is still quite complicated, but there is a
dramatic simplification if we work with minus the inverse of M:



set N = -M~t' then (4) and (5) reduce to

VN, = g 6

and Vo -%trace(gN~'). 7

From (3) and (6), the off-diagonal terms in N are constant so set

N = [&a v 8
v b A
[T S o

where \,p,v are constants, then (6) in components reduces to the 3
equations

a, = b, = 1/V ; c, = ev/V 9
At once, from (9)
a-b = 2L constant,

where we retain the convention of using Greek letters for constants. Define
a new constant n by

n* = (2 + v2

then a convenient parametrisation, in terms of a new variable w, turns out
to be

a=n(‘ﬂ)+c b=n(u)-'c 10
w-1 w1

Next we note from (7) that
VZdetN = £ constant 11

Our aim is to obtain an equation for w. We solve (10) and (11) for c in
terms of w, V and constants, then eliminate V in favour of w, using (9) and
(10). This gives ¢ in terms of w, w, and constants and then the last part
of (9) gives a second-order ODE for w. A change of independent variable

z = e+ 12

enables this final ODE to be written as

dz2 \2w w-1/1dz dz z= w z w1

d2w=(1 + 1 de2 -1 dw + (w1)3(aw + B) + yw +dwwtl) 13

(&) = v 7 e
where «a,B,y,8 are constants which can be expressed in terms of the
constants which we already have ie A,u,v,E.n.{. Painlevé-buffs will
recognise the ODE in (13) as Painlevé-V (P-V for short), with the usual
conventions. In fact, the constant § turns out to be zero in this case, and

Fokas and Ablowitz (J.Math.Phys. 23 2033 (1982)) explain how to transform
this special case of P-V to P-III.



Given a solution w(z) of (13), we can work our way back to the matrix N and
so to M and to u(x,y,2). To be able to write down a scalar-flat K&hler
metric, we have still to solve a linear PDE, but to write down a hyper-
K&hler metric, there are no more choices to be made: given u(x,y,2) the
metric is immediate. In particular, given the function u(x,y,z) appropriate
to the PP-metric, there is a hyper-K8hler metric with the same u
(apparently a new one, but it won't be ot Bianchi-type-IX unless its
already known!).

The special case of this procedure when the matrix M in (2) is diagonal, or
equivalently when the constants A,p,v in (8) are all zero, is the one which
leads to the PP-metric, which was already known to involve P-III. What is
obscure in this approach is why the PP solution of (1), which must lead to
a scalar-flat K&hler metric with an S'-action, actually leads to a far more
symmetric metric with an SU(2)-action. This raises the possibility that
these more general solutions of (1) also lead to scalar-tlat K&hler metrics
with SU(2)-action., If these exist, and I am grateful to Andrew Dancer for
the suggestion that they do, then their metrics will look like

ds2 = Fdt= + A, ,0'0? 14

where A, is a matrix function of t, and the ¢! are a basis of left-
invariant one-forms for 5®. The question is whether one can relate the
matrix A to the matrix M of (2)., Certainly for the PP-metric, when M and A
are both diagonal and t in (14) is proportional to u, this is possible.

One could also try different generalisations of the ansatz (2): for example
with hyperboloids in place of ellipsoids (ie with an indefinite M{(u) rather
than a positive-definite one) which presumably leads to a Bianchi-type-VIII
metric, or with paraboloids or even with planes (This case, which is fairly
easy to do, leads to a Riccati equation in place of (13)). And, of course,
free with every solution of (1) one obtains a hyper-K&hler metric too.

Acknowledgement

I gratefully acknowledge that this calculation was precipitated by Andrew
Dancer's suggestion to me that the PP-metrics have non-diagonal
generalisations.

Paul Tod
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A ‘twistor transform’ for complex manifolds with connection
by Dominic Joyce, Christ Church.

In this note we will briefly describe the geometry of a class of complex manifolds, to
be called complex-flat manifolds, that have a connection V satisfying a curvature condi-
tion given in §1, which is the curvature condition satisfied by the Levi-Civita connection
of a Kéahler manifold. The structure has a sort of twistor transform: in §2, V will be
used to define an almost complex structure J on the tangent bundle of X, and it will be
shown that J is integrable exactly when the curvature condition holds.

It therefore gives a miniature picture of the Penrose transform for conformal 4-
manifolds, where the Cartan conformal connection is used to define a complex structure
on a bundle, and the integrability condition is a condition on the conformal curvature.
In §3 we give some examples of complex-flat manifolds.

1. Connections, curvature and complex structures

We begin by recalling how to decompose tensors relative to a complex structure
I. Let X be a complex manifold, with complex structure I, which will be written with
indices as I* with respect to some real coordinate system (z?,...,z%"). Let K = K%~
be a tensor on X, taking values in C. Here a is a contravariant index of K, and any
other indices of K are represented by dots. The Greek characters «,3,7,6,¢, and the
starred characters a*, 3*,v*, 6*, ¢*, will be used in place of the Roman indices a,b,c,d, e
respectively. They are tensor indices with respect to (z!,...,z2") in the normal sense,
and their use is actually a shorthand indicating a modification to the tensor itself.

Define K® = (K%~ +iI$K?)/2 and K* = (K® —iI¢K3+)/2. In the same
way, if b is a covariant index on a complex-valued tensor L' , define Ly = (Lj: —
if}L;: )/2 and Ly = (Ly: + iIfL;_'“)/Z Then K% and Ly are the components of
K and L that are complex linear w.r.t. I, and the starred versions are the components
that are complex antilinear w.r.t. I. These operations are projections, and satisfy K% =
K*+K*~and Ly =Ly +Lj. . . The complex decomposition of a real-valued tensor
is self-adjoint. This means that changing round starred and unstarred indices has the
same effect as complex conjugation. All the tensors we deal with will be self-adjoint.

Let V be a torsion-free connection on X satisfying VI = 0. The connection will
be written in the usual way as I'g_, relative to the coordinate system (z!,...,z?"). In
this fixed coordinate system, I' may be decomposed into components relative to I as in
the previous subsection, but as I is not a tensor this decomposition does depend on the
coordinate system. Therefore, we shall consider only coordinate systems (z!,...,z%")
with the property that I is constant in coordinates, i.e. I} /9z° = 0 for all a, b, c.

As VI =0 we have I't, = ', + I'%._, and as V is torsion-free I'¢, = I'%,. Together
these imply that 'y, = I'g, +'Fg:7.. Now the curvature R%, 4 of V is given by R%, ; =
04,/ 0x° — AT'g, /0 + T3}, — 3,0}, Substituting in for T' gives R%, 4 = Ry, +
R . 4

Because V is torsion-free, R satisfies the Bianchi identity R*, ,+ R®, 4, + R%4. =0,
and thus R%g. .5 + R® 5.5+ R%.5.. = 0. But from above the last two terms are zero,
and 8o R%, .;. =0, and similarly R"'ﬁ.ﬁ& = 0. Therefore

Ryea = R%gps + Ry + Ry + R oo + R s + R oo (1)



A2

Now by [Bo], Lemma 5, the curvature tensor of a Kihler manifold satisfies
Rabcd = Ra.ﬂo760 + Ra.ﬂ..,o(g + Raﬂ;'&o + Raﬂ‘y'&' (2)

So the curvature of the Levi-Civita connection of a Kéhler metric satisfies (2),
whereas the curvature of a torsion-free GL(n,C)- connection V only need satisfy (1),
which is weaker. A torsion-free connection V will be called complex-flat if VI = 0
and its curvature satisfies (2). In fact, as the curvature of V already satisfies (1) it is
necessary and sufficient that it should satisfy the additional condition R*, ;= 0.

2. The twistor transform

Let X be a complex manifold, with complex structure I, equipped with a torsion-
free connection V satisfying VI = 0. The tangent bundle TX of X is naturally a
complex manifold, with complex structure also denoted I. Using V, a second almost
complex structure J will be defined upon the total space of TX, which will turn out to
be integrable exactly when R*; ; = 0. So J is a complex structure if and only if V is a
complex-flat connection.

Let z € X and y € T.X. Then (z,y) is a point in TX. The tangent space
T(z,4)(T X) splits naturally into a direct sum H @V, where H is the horizontal subspace
of the connection V at (z,y), and V is the tangent space of the fibre of TX over z. Now
V is closed under I as T X is a holomorphic bundle, and H is closed under I as VI = 0.
Let v be a vector in T(. ,,)(TX). Under the splitting T(,,,)(TX) = H ® V, we may write
v = (v1,v2). Define Jv = (Iv;, —Iv;) for all vectors v, and for all z € X,y € T X. This
defines an almost complex structure J on the total space of T X, commuting with I and
projecting down to I on X.

We will write J out explicitly in terms of the connection components I, and calculate
the Nijenhuis tensor Nj of J, which will give the condition for J to be integrable.

Let (z!,...,22") be a coordinate system as in §1, for some open set U C X. Let
..., ) be coordjnates w.r.t. the basis (8/9z!,...,8/8z%") for the fibres of TU.
Then (z!,...,2%",y!,...,9?") are coordinates for TU. In these coordinates, J is
0 0 0 0 d
J a b a b dpa b c_.
( dz* +e oy ) bF Gza T b4 oyt — 2L T Byd

Decomposing this expressmn w.r.t. I leads to some simplifications, as we may use
the facts that I'y, =T'g, + Fﬂ. . and I =163 — z6ﬂ.. So we have

J a+ 0N _ipo 0 i O e 0 Ly O
P e T o ) T gga T g T ga T G
.o a . ao - - a

- 2:Fg,,yﬁp7—a;; + 211-‘5..1.1/’3 p" W

Theorem. The almost complez structure J is integrable if and only if R%; ;= 0.

Proof. By the Newlander-Nirenberg theorem, a necessary and sufficient condition for
the integrability of J is the vanishing of the Nijenhuis tensor N, of J, which is given
by Ny(v,w) = [v,w] + J([Jv,w] + [v,Jw]) — [Jv,Jw]. We shall evaluate N; with
v = p*0/0z*+¢*3/dy* and w = r*0/0x*+3°3/0y*, where p*, ¢, r* and s® are constants
independent of °,y°. It is easy to see that [v,w] = 0. Using the fact that J acts as —I
on V, one calculates that
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org b 61" ~ b " b
J([Jv,w]) =2rd——€,1yﬂp“’—; +2 aﬁd p By + 2T s%p 5y
BI‘ . d
— Y — B ~+* — a b._c
J([v, Jw]) = 2p 6 yﬂr ay“ 2p? 954 LAy e g’r oy’
and [Jv, Jw] =
a . a a . . [ . a
. N _oa 8. Y a” vy
(zp o ip ——63:5') ( 2lg, 9T e + 205, yﬁ r ay"‘)
0 . 0 J . .« e O
- 8 . 8 2 ave] R aved ﬂ
(7 50s" t) (2R gy 2 )
7] d
—4Fﬂ71jﬂ 71—‘&7' ‘éy— 4Fﬂ‘ yﬂ p7 F&.C.T 'a—a—
a 0
+ 4Fﬂ,yyﬂr7r56p 6 + 4Fﬂ‘ yﬂ 7"7 F?.ecp( 6‘—07
« 0 o S a

Combining the above gives

3 - L] - a
Ny(v,w) = 4R" ﬂvwﬂr"P e TARY oyt 110" 5

CX.’

using the expression for R in §1. As this holds for all v, w and y° for each fixed z, N; =0
identically if and only if R*;_; = 0. ]

3. Examples

The simplest examples of complex-flat manifolds are Kihler manifolds, taking V
to be the Levi-Civita connection of the Kahler metric. However, there are many other
examples of complex-flat manifolds with no compatible Kahler metric. We shall comment
briefly on three such families. Firstly, using the work of [J] for hypercomplex manifolds
it is possible to define a quotient construction for complex-flat manifolds analogous to
the Kahler quotient. Starting with a flat complex-flat structure one may produce non-
Kihler complex-flat structures by choosing a moment map not compatible with any
Kéhler metric.

Another way of constructing examples is to consider complex submanifolds of complex-
flat manifolds. To induce a connection on the tangent bundle of a submanifold M of X
we need a splitting TX |y = TM @V for some vector bundle V; for the induced connec-
tion to be complex-flat, it turns out that V' must be a holomorphic subbundle w.r.t. J. In
the case, say, of projective varieties in X = CP", there may be many different choices of
V satisfying this condition, and each will give a distinct complex-flat connection on M.

Our final family of examples are hypercomplex manifolds. A hypercomplex manifold
is a manifold M*" with complex structures I, I; and I3 satisfying I I, = I5. By [S], §6,
there is a unique connection V on M called the Obata connection, that is torsion-free
and satisfies VI; = 0. We shall show that V is a complex-flat connection for each of the
complex structures Iy, Iy, I3. Thus hypercomplex manifolds are examples of complex-flat
structures that in general do not come from Kahler structures.
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Proposition. Let M and V be as above. Then the curvature R*,_, of V satisfies
R*5 s = 0 in the complex decomposition with respect to each compler structure I;. Thus
(M,I;,V) is a complez-flat manifold.

Proof. We shall prove the result for I, for by symmetry it then holds for I, I3. As V
is torsion-free and VI; = 0, from §1 the curvature R satisfies R*, ; = R%; 4+ R* 5.,
in the complex decomposition w.r.t. I, and so R%,_, = —(12)‘]?(12):Rjkcd. Also, from §1
the component R* 8ey6 is zero in the complex decomposition w.r.t. I;. Therefore

0=(1-1h) (1 +ih)j(1 - il)c(1 —il1)3RP,,,
= (1 —ih)p(L+il){(1 - if)(1 - il)4(L)i(L)s Ry,
= (L)} (I)s (1 +il)5(1 — sh)i(1 —ify); (1 - il)3RP,,,,
where 131, = —1I,1; is used in the last line. So

1 . a . . r . a [« 3
E(l + ‘Il)p(l — 'Il):(l - 111)‘:(1 - "Il)dqurl =R BvE = 0 (3)

in the complex decomposition w.r.t. I;, which is the condition for (I;, V) to be a complex- -
flat structure on M. ]

Thus the results of §2 apply to hypercomplex manifolds, and lead to some new
ideas about the Obata connection and complex structures on the tangent and cotangent
bundles of a hypercomplex manifold.
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Exceptionally Vile Invariants
A. Rod Gover 12 August 1992

Regard P™ as & homogeneous space for SL(n + 1,R) and, for a particular ho-
mogeneous bundle over P", consider the problem of constructing all density valued
differential invariants on the bundle which are polynomial in the jets. We will call
such objects projective invariants. An example for n = 1 is given by the formula,

wfVVf —(w-1)VfVf

where f has weight w. Here V, (often written & and called edth) is a local] flat
affine connection. Of course P does not have a unique such connection but rather a
family of them related by transformation formulae, V +— V f 4+ wT f where T satisifies
VT = T? (see e.g. [1] for the corresponding formulae on P"). The point is that this
differential operator is invariant under these transformations. (An analogous, and
more familiar, problem is to find conformally invariant differential equations for flat
conformal structures. The standard model for the latter is S™ as a homogeneous space
for SO(n + 1,1). Of course for n = 1 these are the same problem.)

Recall that a function f of weight w on P™ corresponds to a function on R**! which
is homogeneous of degree w, i.e. f(AX4) = A¥f(X*), where X4 are the standard
coordinates on R"*'. So a good trick for proliferating many projective invariants
on P" is simply to write down affine invariants on R"*! and then regard these as
invariants on P™ by simply insisting that f be homogeneous of some weight. For
example if n = 1 then the following is an affine invariant on R"+!,

' e?P0,0g fAcdp f

where 04 := 0/0X*. The standard representation theory of SL(n + 1,R), due to
Weyl and others, tells us scalar valued affine invariants on R™*! are always linear
combinations of such complete contractions. If, in the last formula, we now restrict
f to be homogeneous of weight w then we obtain a projective invariant. In fact for

w # 1 this is precisely the invariant mentioned earlier. Invariants which arise this way
are called Weyl invariants.

Since it is evidently possible to list all Weyl invariants, it is interesting to ask if all
projective invariants are Weyl. It turns out [7] that if the weight w of f is non-integral
or negative integral then all invariants are Weyl. However for the remaining case with
w non-negative integral, to which we now restrict our attention, we shall see that it is
easy to write down some invariants which are not Weyl. Such will be called ezceptional
invariants or, since these are the troublemakers of the invariant world and with a view
to homophony, vile invariants. Even for the simple case of densities on P" it is not
known how to sort out the Weyl invariants from the vile invariants. However, there is
a simpler, yet very important, problem on which much progress has been made. For
each weight w there is a linear invariant differential operator O(w) — O( ab. . d)(w);

w4l
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in terms of a local affine connection V, on P*, thisis given by f — V,V, .-V f. This
operator splits the jet bundle. So instead of looking for invariants on the jets of O(w)
one can look for invariants on the“slightly smaller” space which, at a particular point
of P", is the jets of O(w) modulo the kernel of this operator. There are analogous
conformal and CR versions of this latter problem too [4,6] and they are geometrical
equivalents of some difficult algebraic problems first posed and discussed by Fefferman
[5]. On P™, I have completely solved this problem [7]. It turns out that, in this case,
there are non-vanishing exceptional invariants. For example, if w = 1, then V,V,f is
invariant and therefore when n = 2 one can construct the projective invariant

eV, Vi fV.Vif.

Since its homogeniety with respect to f is just two it cannot be a Wey! invariant (the
construction of which requires that a ¢A?C be used). The general situation is well
characterised by this example; in n dimensions the exceptional invariants are always
constructed by a contraction of w 4 1 €2*?’s into an n-fold juxtaposition of the linear
operator with itself.

By adapting the methods in [7] and invoking some new tricks Bailey, Eastwood and
Graham [2] were able to solve the corresponding problems for flat CR structures and
odd dimensional conformal S”. There are no exceptional invariants in the CR case but
for the conformal S™ case there are. Here again it turns out that operators which are
homogeneous of degree n in the argument density f are exceptional while all others
are Weyl. However, in [2] the authors posed the question of whether the exceptionals
were, as in the projective case, constructed purely from juxtapositions of the linear
invariant Y(.Vb e Vd)&' f, where w is the (non-negative integral) weight of f.

——

w41

More recently I was investigating the same question for invariants of vector fields
on P" and discovered a means of generating exceptionals which are rather more
vile. Here is a simple example. Consider the problem of constructing invariants
of the module which is jets of vectors v* of weight 0, at some point modulo the
kernel of the linear invariant differential operator. In this case this operator is
trace-free(V,V,v°) and is given in terms of R**! objects by vﬁ'B := J,0pv°, where
vY satisfies (the divergence free “gauge” condition) 8cv® = 0. Note that, as well
as being trace free, v$g is annihilated upon contraction with X4, since v4 is homo-
geneous of degree 1 with respect to X4. Now let 84 be a covector in R**' which
satisfies X484 = 1. So Ba is homogeneous of degree —1 and is only defined up to
transformations B4 ++ 4 = fa + T4 where XAT 4 = 0. Consider now the object

336p(vf3 ng GACIeaulﬂlﬁJ )

This is clearly an invariant provided it is independent of the choice of B4. Indeed it is
independent of B4, and so an invariant, because eAC!f; = €418, + X144 for some
v°. When expanded out it is given by the formula

el (V Ve Var' ViV, Vir® + 2V,.V, ViV, 0° VoV b + V.V, V,0°V,V,V,ot)

and so is clearly non-zero. (Thanks to Michael Eastwood for helping check this expan-
sion.) Furthermore this is certainly an exceptional invariant since it is homogeneous
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of degree just two with respect to v and is an example which is not simply a juxta-
postion of the linear invariant with itself. Fortunately it turns out [8] that, for vectors
on P, all exceptional invariants can be constructed by a generalisation of the method
used for this example. So the exceptional invariants can now be listed as readily as
Weyl invariants. These methods work for many other similar modules. For example
an important application of these new results and the earlier ones mentioned is for
the job of listing all invariants of projective structures (i.e. the curvature invariants
of a projective manifold). There is an algebraic problem which arises in this context,
analogous to the ones alluded to above, which I have now solved. This will appear
in [9]. Toby Bailey and I (3] have shown that these arguments also work for the
conformal case.
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On the symmetries of the reduced self-dual
Yang-Mills equations

L. J. Mason

Introduction

One of the remarkable features of reductions of the self-dual Yang-Mills equa-
tions to systems in two dimensions is that the symmetry group of the reduced
equations (in the context of space-time symmetries) is much larger than one
might have expected, often being infinite dimensional. A priori, one would
expect the symmetry group of the reduced equations to be just the projection
of those conformal symmetries in 4-dimensions that normalize the invariance
group that one is reducing by. In Hitchin (1987) it was observed that the
reductions of the self-dual Yang-Mills equations on Euclidean 4-dimensional
space by two translations are actually conformally invariant in the infinite
dimensional sense in the residual 2-dimensional space (a priori one would
only expect the equations to be invariant under the 2-dimensional Euclidean
group plus scalings). In Mason & Sparling (1992) it was observed that reduc-
tions of self-dual Yang-Mills by 2 translations spanning a 2-plane on which
the metric has rank one also has an infinite dimensional symmetry group at
least when the gauge group is SL{2)—nonlinear analogues of the Galilean
group in so called (1 4+ 0)-dimensions as opposed to just the linear Galilean
group in 2-dimensions..

The purpose of this note is to clarify the geometry underlying this result
and state it independently of the gauge group. I also discuss two other exam-
ples of this phenomena, one being the reduction by symmetries spanning a
totally null ASD 2-plane where the symmetry group is the whole diffeomor-
phism group (rather than just GL(2)), and the other being the reduction by
two rotations (or a rotation and a translation) in which the symmetry group
is the hyperbolic group in 2-dimensions (SL(2,R)).



An important corollary of Hitchins result is that it makes it possible to
transfer the equations to a general Riemann surface where they consider-
ably enrich the theory of holomorphic vector bundles. The above results
give alternate ways of transferring different reductions of the self-dual Yang-
Mills equations to 2-dimensional surfaces endowed with different geometric
structures.

The Yang-Mills Higgs equation on a Riemann surface

First a brief review of Hitchin’s equations. We will use (2, w, z, W) as coordi-
nates on R* that are independent and real for signature (2,2) or complex with
z = z etc. for Euclidean signature. We start with the Lax pair formulation
of the self-dual Yang-Mills equations.

The self-dual Yang-Mills equations are the compatibility conditions for
the pair of operators:

Lo=D,- Dy, Ly =D, + AD;.

where A € C is an auxilliary complex parameter and D, is the covariant
derivative of some Yang-Mills connection in the direction 3/9z.

For Hitchin’s equations we start in Euclidean signature and impose sym-
metries in the 9/0w and 8/0w directions. In an invariant gauge (i.e. one in
which the gauge potentials are independent of (w, %), D, = 8/0w + ' and
cc. and we can throw away the derivatives with respect to (w, %) to leave the
pair of operators (with a litte rearrangement):

Lo=D,— AV, L =D, + %6'.

We can make this more geometric by multiplying Lo by dz and L, by dz and
defining ® = ¢'dz. We then obtain the form valued operator:

L=dzL0+dEL1=D—)‘<I>+§&>.

The Yang-Mills Higgs equation on a Riemann surface are the consistency
conditions for these operators:

D*=dAd, D&=0, DO =0.
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Where D is the covariant exterior derivative. These equations are invariant
under the conformal group in two dimensions as they only require a bundle
with connection and a complex structure to define ® and ®. One solution
will be transformed to another if z — 2/(z) and ® and D pull back.

Alternatively, these equations depend only on the x—operator on 1-forms
on the quotient space of the symmetries. The data consists of a connection
D on a bundle, E and a section T' = & + ® of ' ® End(E). The operator
Lis

L=D+(—/\l_” 1+”)F.

2 + 2\

So the field equations arising from the consistency conditions of this operator
are invariant under the diffeomorphisms preserving *, i.e. the conformal
transformations in 2-dimensions.

The Galilean analogue

If, in (2,2) signature, we impose one null symmetry along 0/0w and one
non-null symmetry along 8/0z — 0/0% we obtain the Lax pair:

Lo=D, - 20, Ly =D, + AD: + ¥)

where z = (2 + z) and we have reorganized the covariant derivative in the
z direction to include part of the Higgs field associated to the symmetry in
the J, — 0; direction. We can again perform the above trick, multiplying Lo
by dr and L; by dw to and adding together to obtain

L=dxlLo+dwly =D + AT + dwD,)

where ' = —®dz + Udw. To write this more geometrically, we introduce
a degenerate *—operator that can be thought of as a map from 1-forms to
1-forms:

* =dw—, ar aofz")dw.

dz’ Oz

The operator L then becomes:
L =D+ AxD +T).

The field equations arising from the consistency equations for this system
are:

D*=0, D' =0, D*T"+T AT =0
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where D above is acting as the covariant exterior derivative so that the
equations are all 2-form equations. Geometrically these equations determine
a flat connection D on a bundle £, together with a section I of Q' ® End(E).

It is clear, now, that the field equations arising from the consistency
conditions for this operator will be invariant under diffeomorphisms of R?
preserving the degenerate »—operator, dw ® 0/0z. These are the nonlinear
Galilean transformations referred to previously:

(w,z) = (v',2) = (h(w), (Guh{w))z + g(w))

where h(w) and g(w) are free functions except that d,h # 0.

These equations embed the nonlinear Schrodinger and KdV equations
and most of their generalizations to higher rank gauge groups (the Drinfeld
Sokolov hierarchies etc.) into a galilean invariant system. At least in the
SL(2) case, this coordinate freedom is completely fixed by the reduction to
KdV and NLS.

The totally null case

In the case where the symmetries span an anti self-dual null 2-plane we
obtain the linear system
L=D+ Al

where again D is a flat connection on a bundle E and [' is again a section of
Q' ® End(E). The field equations are now:

D*=0, DI'=0, TAT =0.

These equations are now invariant under the full 2-dimensional diffeomor-
phism group (preserving the ‘zero’ *-operator).

These equations are therefore ‘topological’ and indeed are another way
of writing the Wess-Zumino-Witten equations (Strachan 1992). Their reduc-
tions include the n-wave equations and those parts of the Drinfeld-Sokolov
hierarchies not obtainable from the Galilean reductions. These further re-
ductions require that their exists coordinates and a gauge in which the com-
ponents of I' are constant. In the SL(3) case one can fix the coordinate
freedom by using these additional conditions.
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Stationary axisymmetric systems

In Fletcher & Woodhouse (1990) it was observed that the reduction of SDYM
by 2 rotations gave the same field equations as the reduction by a translation
and a rotation. ‘This fact alone endows the 2 rotation reduction with one
unexpected symmetry, the residual translation symmetry. However, more is
true. These equations are invariant under SL(2,R) the group of motions of
the residual space preserving a hyperbolic metric. While this was in some
sense clear from the reduced twistor correspondence in Woodhouse & Mason
(1988), it was difficult to see on space-time.

To see this we impose a rotational invariance with respect to 8 in the
w = yexp(:0) plane and set = 2z + z and impose a symmetry in the 9, — 0;
direction. We obtain the linear system:

D, —iA+ Ae*(D, + i(a‘, - B)), (D, - 5(59 — B)) = MD, + iA).

We cannot just throw away the 9y as there is explicit dependence on @ in the
operators. This is connected with the fact that the Lie derivative of a spinor
and hence X along 0y is not zero. To work independently of § and to avoid
derivatives with respect to the ‘spectral parameter’ we must use, instead of
A the parameter ,
_ ye'’ A b Y
2 2e A
as this the simplest function on the spin bundle that is both invariant and
constant along the twistor distribution.

If we introduce the complex coordinate ¢ = z + 1y, a bit of massage yields
the following form for the linear system:

9 .Iv—f i il i
¢+ 7_E(A+yB), 2D¢ +1 ‘Y"E(A yB)

In order to bring out the invariance properties of this system, we can first
of all multiply the first operator by dé and the second by d¢é and add them
together. Then introduce homogeneous coordinates y4 = (70, 11) with vy =
T /7 and similarly for £4. Define 4 to be the componentwise complex
conjugate of {4 and denote the skew product 11§ — €170 = 7-&. The linear

5
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system then reduces, after some further massage, to:

7€ 7-€
d 2
oy Syl B R e

where we have put @ = (\/yA +1B//y)/éo.

It can now be seen that the linear system is invariant under SL(2,R);
the Mobius transformations on £4 preserving the reality structure {4 — §a
and hence the hyperbolic metric € - d€ ® £ - d€/(i€ - £)®. The integrability
conditions are equations for a connection D on a bundle £ and a section
® € I'(O(-1)® E) that is a dual spinor valued section of End(FE).

The field equations are

2D +1 ®f - dé

E-dENE-dE i) - ¢
, 00 =——, 00 = ———
=027 % ¢ %2

where 9 and 0 here denote the ‘eth’ operator and its complex conjugate, the
(0,1) and (1,0) parts of the covariant derivative respectively.

So the ‘Higgs fields’ ® and @ together constitute a Dirac field and satisfy
the background coupled massive Dirac equation. Their commutator provides
the curvature of the connection.

Remarks

Just as in Hitchin’s case, one might hope to be able to transfer the other
equations above to a Riemann surface also.

For the Galilean analogue, instead of endowing the Riemann surface with
a complex structure, one might endow it with a measured foliation which
corresponds to a limit of a complex structure (i.e. the space of measured
foliations modulo certain equivalence relations is a good boundary for Teich-
muller space). It turns out that this is nof the same concept as the degenerate
x-operator introduced above. They both determine a foliation of the Rie-
mann surface, but the degenerate *-operator has an affine structure on the
leaves, but no structure transverse to the leaves, whereas the measured foli-
ation has a measure transverse to the leaves, but no structure on the leaves.
Nevertheless, one might hope that one could prove an equivalence between
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the two, modulo diffeomorphisms in the global context as a kind of uni-
formization result. Even if this is feasible, it is still perhaps not clear that
one can obtain a good existence theory for solutions of this equation as the
linearized analogues of these equations have *I' covariant constant along the
leaves of the foliation, a condition that will have no solutions when the leaves
are dense.

Further analysis is required for the other cases. The totally null reduction

will presumably not give rise to any difficulty as the equations are underde-

“termined anyway. This leaves the Hyperbolic case for which more analysis is
required.

Thanks to Jorgen Andersen for conversations.
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Integrable Systems and Curved Twistor Spaces

I.A.B.Strachan

One of the ways in which the self-dual Einstein equations may be understood is as
a two dimensional chiral model with the gauge fields taking values in the Lie algebra
sdif f(£?) of volume preserving diffeomorphisms of the 2-surface £2 [1]. Moreover, since
sl(2,C) is a subalgebra of sdif f(X?), solutions of certain integrable systems associated
with sl(2,C) may be encoded within the geometry of the nonlinear graviton [2]. This de-
scription breaks down for higher rank algebras, which are not subalgebras of sdi:f f(£2).
However, by generalising the algebras such a description may be achieved. Another rea-
son for studying integrable systems with infinite dimensional gauge groups is that the

equations often simplify, and in some cases even linearise [3).

Let { , } be a generalised Poisson bracket acting on some manifold A, satisfying the

conditions:
o {fi9}=—{a,f} (antisymmetry)

o {figh} ={f,g}h + {f,h}g (derivation)
o {f,{9,h}}+cyclic=0 (Jacobi identity)

With respect to a basis z¥,i = 1,... ,dimA, one may take”
af g
-V gii
()= S 0¥ergligt )

where G'(z) is constrained by the equations

G +G" =0
dim N 96 | ;96 G,kaaf . (2)
2 G + 6o ol

Given such a structure one may define an associated Lie algebra Ham of Hamiltonian

vector fields. Let Ly € Ham , where

i, \Of O
LI—ZGJ( )3:::'311

iJ

The Lie bracket for the algebra may be defined in two different, but equivalent, ways:

* Such generalised Poisson structures were first studied by Sophus Lie.
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¢ Regard Ly and L, as differential operators, and define the Lie bracket for the algebra
by [Lyg,Lg] = LyLy — LyLy,

o Regard Ly and Ly as vector fields on A and define the Lie bracket for the algebra
be the Lie bracket of vector fields [Ly, Lg]Lic -

In both cases [Ly, Lg] = Lys,4) - The fact that this forms a Lie algebra follows trivially
from (1) and (2). The idea now is to study the self-dual Yang-Mills equations with gauge
potentials taking values in this infinite dimensional Lie algebra.

Let y44’ be spinor coordinates for C* (or perhaps R?*? etc. depending on a choice
of reality condition). The self-dual Yang-Mills equations are the compatibility condition

for the otherwise overdetermined linear system:
a) @ ' A 1
LAl =7 {————,+AAA4}\I', AA=0,1, " eCP . (3)
By AA

The A44/(y) are Lie algebra valued functions known as gauge potentials. In what follows
it will be assumed that these take values in the Lie algebra Ham constructed above.
Thus the A44/'s are represented by vector fields Aqa <+ Ly, ,,, where the functions faa
depend on both the coordinates on €* and on N .

With this, the linear operators £ 4 are now vector fields on C* @ N,

Ly=7* {g AR + ZG"( )652:4, 3:5,} (4)

Owing to the equivalent definition of the Lie bracket, the self-duality equations are
a special case of the (Frobenius) integrability conditions for the distribution (4), i.e.
[Lo, L1)Lie = 0. The integral surfaces of this distribution may be regarded as curved
twistor surfaces, and the space of such surfaces as a curved twistor space, fibred over the

Riemann sphere.

The converse construction involves studying an appropriate Riemann-Hilbert problem
for the infinite dimensional group. Similiar ideas have been applied to the SU(o0)-Toda

equations in [4], which also developes the notion of a 7-function for this system and its

associated hierarchy.

As mentioned at the beginning of this article, Mason showed [2] showed that one

could give a curved twistor space construction to certain integrable systems associated
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with sl(2,C) by embedding it in the algebra sdiff(X?). The same is true for any finite
dimensional Lie algebra ¢. Let the structure constants for the Lie algebra g, with respect
to some basis €¢',i = 1,...,dimg be c‘jk, so [e',e)] = Y cijke". From this one may

define a generalised Poisson bracket by setting

GY(z) = Z cijkz"
k
(the conditions (2) are automatically satisfied due to the properties of the structure func-
tions), and let the associated infinite dimensional Lie algebra of Hamiltonian vector field

be denoted by §. The original Lie algebra is now a subalgebra of g, since

[Lgiy Lgi) = Ec‘jkL,n .
k

Thus any solution to the self-dual Yang-Mills equations with a finite dimensional algebra
may be encoded within the structure of a curved twistor space by first embedding ¢ in §.

Another approach is to use a deformation of sdiff(X?) known as the Moyal algebra
[5], in which higher order derivatives are present. This leads to some interesting results,

but a direct geometrical interpretation of the results is absent.
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Endomeorphisms S : @ HY(PT+,0(-2)) «

We write H for.the Hilbert space completion H}(PT+,O(—2)) with respect
to < | > of H}(PT+,0(~2)), the space of analytic positive frequency free
zero rest-mass (z.r.m.) fields on Minkowski space with finite L?-norm on the
momentum space light cone [1,2]. To a given basis

B ={A,B,C.D}CT =C* )

of dual twistor space we can associate functions e‘B of homogeneity —2 on T as
~ follows:

el l_CchAl+aBl+b 0 __A_ _B__ _
B(Z)—-(é)(zl)/(é) (é) € H°(PT {%-0} {%—0},0( 2))

|
for i=(a,b,c,d)eXI={(k!,mn)eNk+i-m—-n=0},Z€T. (2

If the projective lines ‘.?_?_’ 9_9 lie in PT~, PT* resp. these functions give rise
to a linearly independent set of states

(idg >hes € HY(PT = () =0} (] = 0},0(-2) ®)

with dense span in H[2], i.e. they form a Hilbert space basis. An arbitrary
element [f > € H has a unique expansion

If>=3 <eP|f> ey > (4)
I

where {< eiB | Jicr is the basis dual to (3) which is conveniently defined via the
basis in T dual to B and the twistor transform [4].

1) B-independence
Algebraically, i.e. up to the definition of a topology on H ® H we can define
endomorphisms S: H@ H — H@ H

s(lg>@ldg>) = 2 egelg> ©

Continuity w.r.t. the chosen topology is reflected in appropriate convergence
conditions on the coefficients Su(B ). We assume them to be smooth functions of
B in a neighbourhood of a fixed basis By. The (infinitesimal) action of GL4(C)
on T then induces an action [ on H:

gEGLYC): B —gB ~ ]e‘B > IeLB >=:1 ]e‘B > . (6)
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We demand invariance of (5) under the action (6). Let for example g. € GL4(C)
be given by

e (4RGP ARG+ ep D) g

Applying g, to both sides of (5) and comparing coefficients of ¢ we find

A A
S(alcle‘3>®|e"3>)=8|CS(|e‘B>®|e"B>) (8)

and in general we obtain
X
3IY , S| =0 for }" € Band arbitrary )'( (9)

The differential operators are understood to act on H ® H via their action on
the parameters B of e'B . This action is the infinitesimal version of (6). It carries

over to the cohomology classes (3) — see [3]. (9) places severe consistency

restrictions on the SL{(B) For example, since every IC‘B’ >Q |eJB > can be
obtained as finite linear combination

Ny X‘.
|e‘B >®le“B>=Zak (Ha;h)le(g'o'm’o)>®|c%> (10)
' E

)('h eB
where Y"" € B, ax € Q and m € N is sufficiently big, we observe that it is
enough to give

S(Icg >®|eh >) EHQH; ™ :=em0m0) (11)
for (almost) all m € N in order to fix S: ®?H — ®%H.

2) Conformal invariance *

Looking at the induced action of the subgroup SU(2,2) C GL,(C) (which is a
4 : 1 cover of the conformal transformations of space-time) we can investigate
the condition on the coefficients in (5) for S to be a ‘conformally’ invariant map:

SB) = <eBlo<ef|s|g>0ld >
= <eBlo<ef (1) s,y >®ley > = sideB) (12)
for all ¢ € SU(2,2). Hence we conclude that the SL{(/IL I.J,Cl', [l)) have to be

_ ) ' ABCD
SU(2,2)—invariant, i.e. functions of L1 |. A consideration of homogeneities
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then shows that in fact they have to be constants. Together with observation
(11) this implies that a conformally invariant S : H ® H « is determined by

S(le‘8>®|e“’3>):kz;.Si?|e"B>®]e'B>. (13)
=i

There are still relations among the 539 due to the condition (9). In fact one

gets for example R
i i k i—
s = (1) (4) s w0

=0

giving S in terms of the (up to convergence conditions) free data {S!0}ien-

Applications
3) Conformally invariant twistor diagrams
For the single and double (and presumably also for higher order) box diagrams
it is quite easy to compute the coefficients S3¢ which, in an analogous way to
(14), determine the respective maps completely. For the single box one finds

(1=l +i+p)

r .
—1}# = i0
from which one can compute
sulle>®e?>) = Z(s“)ﬂ|e">®|e‘> (16)
k4i=s
(=D* P+ k-1 +1+p) !
13 k%::i NIETED [ef>®@ e >.
For the double box we get
e, * Y
h
! I FI+A4+)0(L+p+14) 0
“A 1=A—p —p - i0
1T Ter IO +ataty - e (0
A [
A
i 0

€ €

Certain properties of the double box, such as derived for example in §2.4 of [5)
are immediate from this expression.

4) Factorization of Feynman Diagrams
Extending the algebraic approach we try to use compositions of linear maps
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S : ®™H — ®"H (and their analytic continuations) to build up complex
Feynman diagrams from simpler ones. Consider for example the conformally
non-invariant diagram of ¢*-theory:

| et > epl
<

\( q

|CJ> \(erl

el

One finds (see (23) - (26)) that the corresponding map factorizes

(18)

S:®°H — Q'H
S(leé>®ed>) = (S201)(joo>@Si(l>®]e>)) . (19)
Here S, : ®2H — @%H and S5 : ¥ H — ®3H are determined by

l1+a

1
Si(|e*>®]e>) = ( E ABlet>®@|e>®@|et>  (20)
[}
a=btc+d

+ CBIe’>®|e°>®|e">>
¢:—l=b+c+dl-J

S, (l e(°'°'°'°)> ® le(b,0,0,0)> ® |eo >) - (21)

a! b! 2 (@i + ). .
- —'_ (al+bl|01¢lpbl)
@ 2 @ alht | >
a;,=a =

Yobi=b
where one uses the appropriate version of (11) in (21). S; is conformally in-
variant and has an analytic continuation to |co>®H ® H. The state |oo> ¢ H
corresponds to the constant field ¢(z) = 1, i.e. it can be represented by a twistor
AB '
function (| {)7! in the limit :1_?_ — 1 , the line at infinity. In diagrammatic
zz

notation we can represent this factorization by

I~ —
e Y

(22)
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To arrive at this one uses two facts. First one assumes that in the space-time
integral corresponding to (18)

[# @85 - 1o 0)a)b i) d'ad'y

= / ' (2)0)(2)04(2)05" ($p(2)8a()x(2)) d'z (23)
one can write
07 (6p(2)bq(2)é:(2)) = Y apyr ta(2)ta(z) (24)
(keP

i.e. that products of two free negative frequency z.r.m fields are dense in the
space of general (L?) negative frequency fields. Secondly, one observes that

(80®@1)e S =5, (25)

where sg = s,=¢ from (16) corresponds to the integral of four (two + and two
~ frequency) z.r.m. fields. This enables one to write

Do akl, (<] ®<e| ®<e,l) Si(le>®|d>)
(k)

= ¥ (S0l / $™(2)6"(2)05 " (bp(2)Ba(2)de(2)) d'z <eget> . (26)
(m,n,t)

It remains to be seen how such factorizations can be extended to general
Feynman diagrams and whether they are reflected on the twistor diagram level.
A rigorous treatment requires careful consideration of the various topologies
involved.
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Twistor description for Weyl’s class of type D vacuum
space-times

Thomas von Schroeter

In his article in TN 34, Nick Woodhouse derived the patching matrix for the Ward
transform of the general anti-self-dual type D vacuum metric, the essential component
of which turns out to be rational of degree 2 in a single complex variable w. As we
know from other previously calculated examples, a simple form of the patching matrix
in terms of rational components of low degree is also a characteristic feature of the real
type D vacuum solutions.

In this note, I shall describe how, for the Weyl solutions among the type D vacuum
metrics i.e. the ones which can be given in the form
. , ride? .
ds? = f(z,7)dt? — ——— — Q¥(z,7) (d2® + dr? (1)
e S
our observation can be shown to arise from the existence of a Killing spinor of valence
2 - that is, a spinor field X4 such that

VauaXse)=0. (2)

As this is true for all type D vacuum space-times (Walker & Penrose 1970), we expect
that we will be able to generalize the argument given here.

Our strategy is to use the Yang-Mills twistor description of stationary axisymmetric
vacuum space-times (Fletcher & Woodhouse 1990), in which the space-time M splits
into a product of the orbits of the two Killing vectors d/dt and 3/38 and a two-
dimensional manifold ¥ with co-ordinates (z,r), the space of orbits. For the metric
(1), the patching matrix is simply P(w) = diag(l/f(w,0), f(w,0)) and thus all we
need to determine is the restriction of f to the axis (or horizon), {r = 0}. If we write
J = diag(~r?/f, f) for the induced metric on the space of Killing vectors (i.e. TE4),
equation (2) translates into

F o= ixF, (3)
dA = -34AAJ7'dY, (4)
D(QAB) = %A(‘,J"Gp)J - sz 50;3 (5)

where Fuy = e4p' Xap and A = A,;dz” is the one-form on T with values in the dual of
the space of Killing vectors that corresponds to X 45 via

(Fap) = (—2011' A(;'j ) :

Here, the matrix decomposition corresponds to the splitting TM = TEL @ TS, »F is
the 4-space dual of F', d and D are, respectively, the operators of exterior and covariant
differentiation on ¥, the indices a and f label elements of TY, j those of TE* and £
15 a complicated expression in J, A and DA with no further relevance for our purpose.
(Note that (3)-(5) remain true also in the general case where J is no longer diagonal.)
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A= (-5 99)

with 8 =: 0%\/f (udz + vdr) a one-form on £ and *8 now denoting its two-space dual
on ¥, then (5) implies that h(w) := u + iv is holomorphic in w = 2 + ir, and (4) is

equivalent to
d(f8) =0 and d (r-2\/} */3) = 0.

As these equations are real, the real and the imaginary part of 3 will satisfy them too,
and thus u and v can be taken to be real functions. As a consequence of the vacuum
field equations, the conformal factor is related to f by

~10,, log (sz) =r(dylog f)*,

and since J is a solution of Yang's form of the ASDYM equations, A = log f has to
satisfy

If we satisfy (3) by putting

’\r + r('\u + ’\rr) =0
(Fletcher & Woodhouse 1990).

Finally, eliminating  and h and expanding f near the axis (or horizon), one obtains
a remarkably simple ODE for fo(2) := f(2,0), namely

3671 - 4S5 =0
of which the general solution can be reduced to

folz) = az’lV 4 btez M f'#0
N7 1 dt e if fo' =0

by using the freedom z +— z + const. (here, a,b,c,d and e are real constants). As a
constant overall factor in f can be absorbed into dt and d#, one should think of both

sets of parameters as homogeneous co-ordinates labelling a projective space of solutions,

which is two-dimensional in the case fj’ # 0 and one-dimensional in the case fJ’ = 0.

Examples:

e Flat space with time translation and rotation:
ds? = dt? — r2d6? — dr? — d2?
and hence f =1, Q=1 thusa=c=0,b=1.

e Schwarzschild space-time with time translation and rotation:
2 2m 2 2m\"t o, 2 2, 2 2
ds :(l——)dt —(1——1—2-) dR? - R* (dy* + sin® d6?) |

The Weyl co-ordinates are = = (R — m)cosy and r = vV R? — 2m R siny and one

findsu=-2m. b=1,¢c=0.
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e Kinnersley’s metric IV A (Kinnersley 1969) can be transformed to
ds? = (27 + a?) [Cv2dt? + 2dtdv] — §A7 da? — 24467
where

2 C(a? - 1*
Az) = m$2'(+'3:2 _(*_aa2) r)

As 1 = v\/2CA(z? + a?) and z = v(Cz — m), v = 0 is just a single point on X
and. in order to evaluate f on {r = 0}, we have to put A = 0. We obtain

d——2—(1+——m—) and e =10
=\t Vo '

e The vacuum C metric (Ehlers & Kundt 1962). Kinnersley & Walker (1970) give

it in the form

ds? = A}z +y)2 (Fde* — F~'dy* - G™'da? - Gde?)
where _

Fly)= -1+3°—2mAy® and G(z) =1 — 2 — 2mAz>.

One finds r = A~*(z+y)"2VFG and z = A"}z +y) *[mAzy(y~x)—zy—1]. The
patching matrix can be adapted to different parts of {r = 0}. For the physically
relevant one, Fletcher (1990) found

2 m?
a=2, b===C(Bi+pa), and e= "5 hib,

where 4, and /3, are roots of F and G {both polynomials have the same roots and
all three of them are real provided m?A? < 1/27).

It is not yet clear to me what the most general case with fg’ = 0 (i.e. d and ¢
arbitrary) corresponds to.
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ABSTRACTS
The Stiutzfunktion and the cut—-function

K.P.Tod

A convex body B in R® is detined by its Stidtzfunktion or support function;
the boundary ot the tuture of B meets future-null-intinity in a cut

determined by a cut-tfunction; these turn out to be proportional. I review
parts of the theory of convex bodies and show how they can be generalised
to cover future- and past-convex space-like 2-surfaces in Minkowski space.

(in 'Recent Advances In General Relativity' eds A.I.Janis and J.R.Porter,
Birkhauser:Boston 1992)

The Hoop conjecture and the Gibbons-Penrose construction of trapped
surfaces

K.P.Tod

The Hoop conjecture in the form that a marginally-trapped surface has its
maximum 'circumterence’ less than about 4n times the mass it contains is
studied for marginally-trapped surfaces produced by the construction of
Gibbons and Penrose from shells of matter falling in at the speed of light
in flat space. Some torms of the hoop conjecture are proved as new
geometric inequalities on convex bodies; other torms of the conjecture are
shown to be false. It is also shown how, despite a widespread belief to the
contrary, marginally-trapped surfaces can be formed in the collapse of
cylindrical or extremely prolate bodies.

(Class. Quant.Grav. 9 (1992) 1581-1591)
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An algebraic treatment of certain classes of spinor

equations with an application to General Relativity

JORG FRAUENDIENER
AND i
GEORGE A. J. SPARLING

ABSTRACT. A new formulation for treating spinor equations on a spacetime is in-
troduced and applied to the spin-2 equation for the Weyl spinor in vacuum General
Relativity, The power of the formalism rests on the fact that it is index free, describ-
ing structures in terms of algebraic relations which makes it well adapted for use in
algebraic manipulation programs. The starting point is the fact that connections in
bundles can be viewed as derivations on the algebra of sections of the bundle. In the
case of the spin bundle there is a canonical operator basis that allows one to take
components in a canonical way so that one can express everything in terms of scalar
operators. Thus, essentially, this is a non-commutativé Newman-Penrose formalism.
In an application to General Relativity we present an algorithm that recursively pro-
duces the terms of a Taylor series expansion of the Weyl spinor around the apcx of
a light cone from characteusuc data given on that cone.

JORG FRAUENDIENER, MAX PLaNcK INSTITUT FOR Asmopuv:,m KARL Scuwanz»cuu.b-'
STRASSE 1, 8046 GARCHING BEI MUNCHEN, GERMANY

Current address: Mathematical Institute, Umversxty of Oxford 24-29 St¢. Gllea Oxford, OX1
3LB, U. K

G. A. J. SPARLING, DEPARTMENT OF MATHEMATICa AND STAleTle. UNIVER»ITY OF PlTTb- .

. BURGH, PITTSBURGH, PA 15260, U.S. A.

COMPLEX STRUCTURES ON QUATERNIONIC MANIFOLDS

MASSIMILIANO PONTECORVO

Dipartimento di Matematica
Universita’ di Bologna
S.IS.S.A.

- Via Beirut 24
34014 Trieste, Italy

September 7, 1992

ABSTHACT. In the first part of this work we consider compact riemannian manifolds
M with holonomy in Sp(n)Sp(1). We show that M admits a compahble complex
structure if and only if the holonomy is in Sp(n), up to finite coverings. We also show
that the sign of the Ricci curvature completely determines the algebraic dimension
of the twistor space.

In the second part, by way of contrast we give two geometric constructions of
'slmply -connected quaternionic manifolds with a compatible complex structure which
is not hypercomplex. The firsi examples are non-compact and symmetric. ' The
second one ig compact and follows from general reults of Joyce {J].
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