Orthogonality of General Spin States

E. Majorana (Nuovo Cimento 9 (1932) 43-50) described the general spin state, for spin \(\frac{n}{2} \), (up to proportionality) in terms of an unordered set of \(n \) points on the sphere — perhaps with coincidences between them, but then multiplicities are counted. Although he did not phrase his argument in these terms, his result essentially expresses the canonical decomposition of a general symmetric spinor of valence \(n \):

\[
\Psi_{\text{AB...N}} = \alpha (A_B^\dagger B_B^\dagger ... N_N^\dagger).
\]

Here \(\Psi_{\text{AB...N}} \) describes the spin state, and its \(n \) principal null directions, represented as \(n \) points on the Riemann sphere \(S \), provide Majorana's set (cf. Penrose & Rindler, Spinors & Space-Time, Vol. 1 (1984) p. 162; RP in 300 Years of Gravitation, eds. Hawking & Israel) C.U.P. (1987); RP in The Emperor's New Mind, O.U.P (1989), Fig. 6.29.

I shall be concerned, here, with the question of the geometrical interpretation of orthogonality between two states of spin \(\frac{n}{2} \). In spinor terms this can be written

\[
\Psi_{\text{AB...N}} \Phi_{\text{AB'...N'}} = 0
\]

where \(\Phi_{\text{AB'...N'}} \) is the timelike (unit) vector (in 4-space) with respect to which the states are all taken to be stationary.

We can write this last relation as

\[
\Psi_{\text{AB...N}} \Phi_{\text{AB'...N'}} = 0
\]

where

\[
\Phi_{\text{AB'...N'}} = t_{AA'}^\dagger t_{BB'}^\dagger ... t_{NN'}^\dagger \Phi_{\text{AB'...N'}}.
\]

Geometrically, the \(n \) Majorana points on \(S \) defined by \(\Phi_{\text{AB...N}} \) are antipodal to the \(n \) points defined by \(\Psi_{\text{AB...N}} \).
\(\Phi_{AB...N} \) (see Spinors & Space-Time, Vol. 1). The relation between

\(\Phi_{AB...N} \) and \(\Psi_{AB...N} \) given by \(\Psi_{AB...N} \Phi_{AB...N} = 0 \) is

called apolarity (cf. Grace & Young, The Algebra of Invariants
C.U.P. (1903)). Apolarity represents a simpler geometrical
condition for a pair of sets of \(n \) points on \(S \) than does
orthogonality — not least because apolarity is
conformally invariant on \(S \) (since there is no dependence
on \(t^a \)) whereas orthogonality is only rotationally
invariant. Then to pass from apolarity to orthogonality,
we simply reflect one or other of the sets of points
in the centre of \(S \).

Nevertheless, apolarity is itself not an easy
thing to express in purely geometrical terms,
in the general case. In terms of components, the
algebraic condition is

\[
\Psi_0 \Psi_n - n \Psi_1 \Psi_{n-1} + \frac{n(n-1)}{2!} \Psi_2 \Psi_{n-2} - \ldots + (-1)^n \Psi_n \Psi_0 = 0
\]

where we can think of the \(n \) Majorana points of \(\Psi_{AB...N} \)
as defined on the Riemann sphere by the roots of

\[
\Psi_0 + \Psi_1 \bar{z} + \Psi_2 \bar{z}^2 + \ldots + \Psi_n \bar{z}^n
\]

(\(\Psi_0 = \Psi_{10...0}, \Psi_1 = \Psi_{10...0}, \text{etc.} \)) whereas orthogonality is
given by

\[
\Psi_0 \bar{\Phi}_0 + n \Psi_1 \bar{\Phi}_1 + \frac{n(n-1)}{2!} \Psi_2 \bar{\Phi}_2 + \ldots + \Psi_n \bar{\Phi}_n = 0.
\]

Let us denote by \(P_1, \ldots, P_n \) the points on \(S \) defined
by \(\Psi_{AB...N} \), and by \(Q_1, \ldots, Q_n \) those defined by \(\Phi_{AB...N} \).
In a recent paper (R.P. "On Bell's Non-locality Without Probabilities;
Some Curious Geometry" to be published in a CERN volume
in honour of J. S. Bell; cf. also J. Zimbard & R.P. "On Bell...
... More Curious Geometry," to be published; HPS (Cambridge 1993),
Imagine a cardboard equilateral triangle with a matchstick through its centre and perpendicular to its plane. The matchstick extends to points T_1, T_2 on either side of the triangle to a distance equal to its in-radius (i.e. $\frac{1}{2}$ its circumradius).

Now imagine that the triangle is held (in 3-space) so that its orthogonal projection to the plane coincides with the plane, scaling up or down as necessary (i.e. place so that, from a long way off, it "looks like" the triangle). See where the points T_1', T_2', C' project to; call them T_1', T_2', C'. The required apolarity condition between the P-points and Q-points is: $C'P_2'T_2'$ and $C'T_1'P_1'$ are similar.

Proofs: Exercise for the reader; hint: look at the accompanying article by MG & RP (also, note that R_1, T_1', R_2, T_2' form a square with centre C').

General n inductive argument

Assume we already know a geometrical criterion for apolarity for two pairs of $n-1$ points. Can we find such a criterion for two pairs $P_1, \ldots, P_n; Q_1, \ldots, Q_n$ of sets of n points on S?

(An) Answer (not very practical!) Fix one of the P-points, say P_n, and all the Q-points, and try to find those special sets of points P_1, \ldots, P_{n-1} with $P_1, \ldots, P_{n-1}, P_n$ apolar to Q_1, \ldots, Q_n, for which $P_1 = P_2 = \ldots = P_{n-1}$. There are $n-1$ such places — call them R_1, \ldots, R_{n-1} — these being the points on S, stereographic from which would yield points $P_n'; Q_1', \ldots, Q_n'$ with P_n' the centroid of Q_1', \ldots, Q_n' (by 2 above). (Unfortunately I don't of a direct construction of R_1, \ldots, R_{n-1}.)
a number of special cases of apolarity are given:

1) If all the P-points coincide then they are apolar to the Q-points iff at least one of the Q-points coincides with the n-fold P-point.

2) If all but one of the P-points coincide, then the P- and Q-sets are apolar if stereographic projection from the multiple P-point sends the remaining P-point to the centroid of the stereographic projection of the Q-points.

3) If n is odd, then any set of P-points on S is apolar to itself.

Let us now consider the general case.

\[n = 1 \] Apolarity holds iff \(P_1 = Q_1 \)

\[n = 2 \] Apolarity holds iff \(P_1, P_2 \) separate \(Q_1, Q_2 \) - i.e. \(P_1, P_2, Q_1, Q_2 \) all lie on a circle on S and the line \(P_1 P_2 \) meets the intersection of the tangents to this circle at \(Q_1 \) and at \(Q_2 \) (or limiting cases)

\[n = 3 \] Stereographically project from \(P_3 \) (assumed simple – otherwise 2 above); we get points \(P'_1, P'_2, Q'_1, Q'_2, Q'_3 \) as the respective projections of \(P_1, P_2, Q_1, Q_2, Q_3 \).

Two ways of seeing the relation of \(P'_1, P'_2 \) to the triangle \(Q'_1 Q'_2 Q'_3 \) (= \(\Delta \)) that asserts apolarity are as follows.

1) \(R_1, R_2 \) are the foci of the ellipse touching the sides of \(\Delta \) at their mid-points. Then the P-points are apolar to the Q-points iff \(P'_1, P'_2 \) separate \(R_1, R_2 \) harmonically (in the above sense \(n = 2 \)) - i.e. they separate harmonically on a circle through them.)
A polarity between \(P_1, ..., P_n \) and \(Q_1, ..., Q_n \) is now simply the condition that \(P_1, ..., P_{n-1} \) and \(R_1, ..., R_{n-1} \) be apolar.

Proof: Consider \(\tilde{p}^{(A} x^B x^C ... x^N) q_{(A} q_{B} ... q_{N)} = 0 \).

Solutions for \(x^A \) give \(R^A, ..., \tilde{R}^A \). Hence
\[
\tilde{p}^A q_{(A} q_{B} ... q_{N)} = R^B \tilde{R}^N
\]
which is the same as the required condition
\[
\tilde{p}^{(A} p^B ... p^N) q_{(A} q_{B} ... q_{N)} = 0.
\]
A.E.D.

A Simple Observation Concerning \(\{2,2,3 \} \) Vacuums

It is well known that every \(\{2,2,3 \} \) vacuum ("type D"), with Weyl spinor
\[
\Psi_{ABCD} = M r^{-3} \epsilon^{A} \alpha_{B} \beta_{C} \beta_{D}
\]
(where \(M \) is a constant and \(\alpha_{A} \beta^{A} = 1 \)) possesses a Killing spinor—a valence-2 symmetric twistor,
\[
X_{AB} = r \alpha_{(A} \beta_{B)} \text{ satisfying } \nabla_{A'} (A' X_{B'C}) = 0.
\]

In the Schwarzschild solution, \(r \) is the standard "radial coordinate," but in general \(r \) is a complex "radial" quantity.

I am not aware that anyone has pointed out the following simple but striking consequence:

Proposition. Along every null geodesic, with parallelly propagated tangent spinor \(O^A \), the null datum
\[
\Psi_{0} = \Psi_{ABCD} O^{A} O^{B} O^{C} O^{D} = C a b c d \epsilon^{a} m^{b} \epsilon^{c} n^{d}
\]
has the precise form
\[
\Psi_{0} = \frac{K}{r^5}
\]
where \(K \) is a complex constant depending on the choice of null geodesic (with its choice of scale for \(O^A \)).

Proof. This is an immediate consequence of the constancy of \(X_{AB} O^A O^B \) along the null geodesic \((O^A \nabla^A \nabla_A (X_{BC} O^B O^C) = 0) \) and the fact that \(\Psi_{0} = M r^{-3} (\alpha_{A} O^{A})^2 (\beta_{B} O^{B})^2 \) and \(X_{AB} O^A O^B = r (\alpha_{A} O^{A}) (\beta_{B} O^{B}) \), whence \(\Psi_{0} = M / (X_{AB} O^A O^B)^2 r^{-5} \). Q.E.D.