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Indefinite, conformally-ASD metrics on S5%x5%
There is a natural, conformally-flat, indefinite metric on S2x5S2, namely

ds® = 4d¢df - 4dndf_ . 1
(+LH2 4=

From the way that this is written, it obviously has an integrable complex
structure J. Lowering J with the (indefinite) metric gives a 2-form which
therefore must be closed. The scalar-curvature of this metric is zero,
being the difference between the scalar curvatures of the summends, so that
(1) defines an indefinite, scalar-flat K8hler metric. The Weyl curvature is
therefore ASD (in fact this metric is conformally-flat) so it has a
twistor-space and we may look for a-planes in the complexification. Free
{,q from {,n respectively and write them as Z,%, then the equation

¢ = antb ; I =_dfi-c 2
cn+d -bf{+a

for (a b} € SL(2,C)/(1,~I) defines an a-plane. As a particular case of (2)
cd

the metric (1) has real a-planes given by (2) for fa b} € SU@)/(I,-1?

c d;
which is just RP3. Finally, there are some more a-planes missed by (2),
namely ones with {=const., n=const., and ones with {=const.,fi=const.. None
of these are real. The way these a—planes fit together to form the twistor-
space is described by Lionel Mason elsewhere in this issue.

At a recent seminar in Oxford, (26/1/93; see the accompanying article),
Lionel gave a fairly explicit picture of deformations of this twistor space
which must lead to deformations of the metric (1) i.e. to real,
conformally-ASD metrics with the ultra-hyperbolic signature (++--)
globally-defined on 52xS2. It is possible to modify the ansatz given by
Claude LeBrun in J.Diff.Geom. 34 (1991) 223 to find some of these metrics
explicitly, and this is what I want to describe here.
LeBrun's ansatz gives the general, scalar-flat, K&hler metric with S'-
action. Start with the metric in LeBrun's notation and switch some signs to
get the indefinite scalar-flat K&hler metric as

ds® = w(e(dx?+dy®) -dz2)~w™' (dep+w) 2. 3
With the change of signs, the field equations turn into

U, ¥ u,y, = (e . =0 4
and Were t Wy, — (wev ) . = 0. 5

There is also the equation for ©, which I will postpone giving.

Now take the solution of (4) given by
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ev =  4(-22%) 6
(1+x2+y2)2

and introduce V by V = w(1-z2)., (The quickest route to the solution (6) is
to demand that u be separable in the sense that u = f(x,y) + g¢z).)

In terms of 8, where z=cos8, and {=x+iy, the metric (3 becomes

ds® = 4V d¢dl - vd82 - sin(dg + @)* 7
+LH=2 v

while (5) turns into

(1+0H)RDRY = (1-z2) 22V, 8
Y414 oz2

To write the equation for ®, deferred from above, we first introduce angles
y,x by { = tan(y/2)exp(iy>. Then

do = (cscy dV dy —. siny dV dx) A csc8® d8 + siny csc8 dV dy » dy 9
ox oy b0

The (obvious) solution of (8,9) given by V=1 when plugged in to (3) gives
the metric (1) on S*xS= with which we began. For a nice way to write some
more, introduce Q by
Q =0V 10
bz

and differentiate (8) with respect to z to get an equation for Q. The
equation which results is the 'ultra-hyperbolic wave equation':

Vi2Q = Vo=Q 11

where the first Laplacian is on the {—sphere, the second is on the (8,¢)-
sphere and Q is independent of ¢ i.e. we get a metric for every
axisymmetric (in this sense) solution of (11),

To solve (11), use Legendre polynomials P, and associated Legendre
polynomials Y,:

Q= 2 8umYam G OP, (@)
substitute into (10) and integrate to get V:

Y4
V=14 380Yem(, 0] Potsids . 12
-1

With these choices, it turns out that V now equals 1 at z = #1, which you
need in order to avoid conical singularities in the metric (7). There
doesn't seem to be a nice formula for .

Thanks to Lionel Mason and Claude Lebrun,
Paul Tod



