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Global twistor correspondences in split signature
L.J. Mason

Introduction

The purpose of this note is to describe the globalization of twistor correspondences in
signature (2,2). In particular I discuss the non-linear graviton construction for anti-self-dual
metrics of signature (2,2) on 5% x S* which specializes to give the twistor description of the
examples of conformally anti-self-dual metrics described by K.P.Tod 1n his accompanyiug
article in this issue. Part of the motivation for this construction arose from a desire to
understand the globalization of other aspects of the Penrose transform in signature (2,2)
and thereby give a twistor description of the Radon transtorm and the inverse scattering
transform. The connection of these ideas with the inverse scattering transform will be
discussed elsewhere.

When one considers boundary conditions for solutions of conformally invariant equa-
tions on R* in signature (2,2), the first condition one might try would be to require that
solutions should extend to the conformal compactification of R*, $? x S?/Z, as the equa-
tions are conformally invariant. We will see, however, that these boundary conditions
eliminate all solutions in hnear theory. This problem is resolved if we go to the double
cover, S* x §? (where one can ask the question as to which fields are invariant uuder the
Z, action).

The global geometry

The conformal compactification M of affine signature (2,2) Minkowski space, obtained by
adjoining a ‘light cone at infinity’, is the projective quadric in RP® given by the zero sct
of a quadratic form Q in R® ol signature (3,3). The conformal structure is determined by
asserting that the light coues of M are the intersections of M with the tangent planes ol
points of ML

To see that the topology of M is S* x S*/Z, diagonalize Q using a pair of Euclidean
J-vectors w and y as coordinates on R® such that Q = w-w — y - y. Set the scale by

requiting w-w = L so that y -y = | also on @ = 0; this yields S* x 5% in R®. However, in
RP, (w,y) ~ (~w,—y) so the topolgy ol ¢ =0 in RPF is S% x 5%/ Z,

The conformal structure is simply realized on the double cover M = §2 x §* by taking
the pullback of the round sphere metric d¥* on each factor and taking the dilference

ds® = prdQ? — pidQ*
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where py, p, are the projections onto the first and second factors vespectively. This is Z,
invariant and so descends to M.

The global correspondence

We will be interested in the cases where the original region on which the fields are defined
are simall complexifications of M and its double cover M (which will be denoted by the
same symbol). We will now consider the correspondence for these cases (or deformatiorns
thereof for ASD metrics).

The twistor space of a space U/ will be the spaces of connected components of (a-planes)
in U . For Z € PT(U), we will denote the correspouding a-plane in U by Z.

The correspondence for M

Just as compactified complexified Minkowski space CM is the the space of complex lines
in CP? via the complex Klein correspondence, M is the space of real lines in RP¥ via the
real Klein correspondence. In the context of the complex correspondence, point of M are
complex lines in CP* that intersect RP iu a real line. Alternatively, they are complex lines
in CP3 that are mapped into themselves by the complex conjugation Z — Z# given by
standard complex conjugation, component by component.

We have PT(M) = CP*. Given Z € CP° then il Z = Z, Z € RPF® and any real line in
RP® through Z corresponds to a point in M on Z. lu this case, Z intersects M in an RIP?,
If Z # Z then the complex line through Z and Z is real and corresponds to a point of M.
L fact the complex a-plane 7 intersects M in the unique point corresponding to this line.

Linear theory

The linear problem was completely solved in the case of the wave equation by Fritz-Johu
using the X-ray transform. In twistor notation, the general solution ol the hyperbolic
wave equation ou R* satistying appropriate boundary conditions can be obtained from the
mtegral formula

(}5(;1.“4‘4’) = %f(;l,‘AA,ﬂ'Ar, 7!"41)71"41(17@4'.

Herve fis a freely specifiable smooth sectiou of O{—=2) on RP’. That ¢ is a solution ol the
ultrahyperbolic wave equation follows by differentiation under the integral sign.

One might naively think that the function ¢ is naturally a function on the space of
lines in RP?, M. However, ¢ is defined by integrating f along lines and in order to perform
the integration, one needs to have an orientation of the line. This means that ¢ is actually
defined ou the space of oriented lines in RP3. This is Ml the double cover of M. Clearly ¢
changes sign under reversal of orientation of the line and so does not descend to M. Indeed,
we will see that there are no solutions of the conlormally invariant wave equation on M.

Remark: Actually, there is a possible confusion here owing to the Grgin phenomena-—the
real point is that these solutions are anti-Grgin. Solutions of the wave equation are sections
of O[—1], the inverse conformal weight bundle. Given just the metrvic ds® = pjdQ* — p3dQ*
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on 5% x 5§*/Z, there are two possible choices for O[—1], the trivial bundle or the Mobius
bundle. The correct choice as far as the twistor correspondence is concerned is the Mobius
bundle as this is just the restriction of the tautological bundle from RF’. The solutions
above are actually sections of the trivial bundle which is wrong as far as the twistor
correspondence is concerned. So one can simply write them down as even functions on

52 x 5% but as odd sections of O[—1].

The correspondence for M

We must therefore study twistor correspondences for M. We shall abuse notation and
denote also by M a small complex thickening of M. We have:

Lemma 0.1 [F"JI‘(M) is the (non-Hausdorff) space obtained by gluing together two copics
of CP*, denoted (C]P’i and CP®, together along some small thickening of RP® using the
wdentity map.

Proof: Points in the complement of (the thickening of) RPF® in CP° correspond to a-plancs
that intersect M in a topologically trivial vegion and these are necessarily covered by two
components in the double cover M. Whereas, points in the (thickening of) RPF® correspoud
to a-planes in (the small thickening of) M with topology RF? so that when one takes the
double cover the a-plane has topology S2.

Thus PT{M) double covers CP? over the complement of the thickening of RP* and the
double covering is glued together over the thickening of ]R[P’3

We reconstruct M as the space of complex lines in IP"]I'(M) that are cut into two pieces
by RP® with one piece lying in le’i’s and the other in CP3. This yields the space of
oriented lines in RP3 the line is given by the intersection of complex line with RP* and
the orientation is determined by multiplying the arrow from the intersection with CP* 1o
that with CP3 by ¢ and thereby rotating it by 90 degrees.

The non-Hausdorffness arises because as one varies an a-plane within M, it can break into
two disconnected parts. The points on the boundary of the glued down region are thie oues
with the non-Hausdorffly separated partner. This space is actually a deformation retract
of that counsidered in the discussion of sourced fields-——see for example the last chapier ol
Further Advances in Twistor T'heory Vol.1.

Complex conjugation

Complex conjugation on the small thickening of M sends o-planes to a-planes and hence
leads to a conjugation on PT(M). This covers the standard complex conjugation on CP’
that fixes RP® and is lifted to ]P"]]."(M[) by requiring that it interchange (CIPi and CP?. Thus
[Z] € CP? goes to [Z] € (ClP’i and the real lines ol the conjugation are those described
above that correspond to points of M.



The X-ray transform.

We can now understand the X-ray transform in this context. Solutions of the wave equation
on M correspond to elements of H'(PT(M), O(—2)). These can be studied by means ol
the Meyer Vietoris sequence using the covering of PT(M) by CP: and CP? . Using the fact

that H'Y(CP3, O(-2)) = 0 = H*(CP*,O(-2)) we find
HY(PT(M)) = H°(CP3 N CP?,0(-2)) = H(RP*,0(-2))

and the formula for the Penrose transform using these representatives is precisely the X-ray
transform.

Deformations of P'T(M)

The nonlinear graviton construction implies that (small) ASD deformations of the confor-
mal structure on S? x S? correspond to (small) deformations of ]P"]I‘(IV‘II). Since CP* is rigid,
the only deformable part is the gluing along RP®. In order to guarantee that the reality
structure is preserved, the gluing map P from som open set in (C[P’i to one in CP® must
be compatible with the conjugation that sends Z € CP3 to Z € CP?. This yields the
condition that P~ = P where P is the conjugate map. This can be arranged as follows.
Take a small analytic deformation p of the standard embedding of RP into CP? so that
p has a small analytic extension to a neighbourhood U of RP? in CP®. Then we also have
the conjugate embedding g of U into CP® which is the complexification of the complex

conjugate embedding (it is also holomorphic). The deformed gluing from CP? to CP? s

then done with the map P = pop~".

The complex conjugation map of the deformed glued down twistor space can then be
defined by sending the point Z € (C[P’i to the point Z € CP?. This conjugation clearly
fixes the image of RP?, is antiholomorphic and acts globally.

The space-time with deformed ASD conformal structure 1s then reconstructed by con-
structing the complex lines in the deformed space that are divided into two parts by the
glued down region and are half in (CIP’E:_ and hall in CP? .

Thus we have a | —1 map from ASD deformations of the conformal structure on 8% x S*
and such real gluing maps as above. These can be thought of as the space of (analytically)
cubedded RP*s in CP? or map{RP* — CP*}/Diff{RP’} as a diffeomorphism ol RP* does
not affect the final 2. This last space can be thought of as the space of complexilied
diffeomorphism modulo the real ones.

Examples: The examples that Paul Tod writes down in his article in this issue are obtained
from a split signature analogue of LeBrun’s hyperbolic Gibbons-Hawking ansatz, LeBrun
1991. The basic idea is to take a global holomorphic vector field on CP* that is real on
RP’ and to drag the standard gluing some fixed amount along the imaginary part of the
vector field. This is a global version ol the construction of Jones & Tod, (1935).

Use 2 x 2 matrices as homogeneous coordinates on twistor space with colummns (A, jea ).
The real slice RP? sits inside as PSU(2) with Ay the SU(2) conplex conjugate of yuq. The
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vector field V = iAg0/0X 4 — 11040/ 0p 4 corresponds to right multiplication by diagonal
SU(2) matrices. The quotient by the complexified vector field is the quadric ¢ coordina-
tized by ({Aal, [jta]) with real slice §%. Ou M the symmetry can be represented so that it
rotates just one ol the S? factors and leaves the other invariant.

Choose a real analytic function on S?, f([Aa], [1ta]) defined for Ay = fis and continue
it to some small thickening of the real slice. Then we dentily (exp(—f)Aa,exp(f)pa) in
CP3 with (exp(f)Aa, exp(—f)pa) in CP? where [A4] and [ja] arve close to being conjugate.
Thus, if we take out the lines Ay = 0 and g4 = 0, the twistor space P7T is a complex line
bundle over the space @ obtained by gluing one copy of the quadric Q4 to another Q_
over some thickening of the real slice.

The space-time metric is given in standard form in Jones & Tod (1985) as

ds* = di)g + (do + w)2/\/'2

where here d¥3 is the Einstein-Weyl space corresponding to the quadric which is just
Lorentzian hyperbolic space and w and V' are the parts of an invariant ASD U(1) connection
that are respectively orthogonal and tangent to the synunetry direction and thus satisly
dw = x3dV where x4 is the hodge dual with respect to d¥3.

It is a straightforward, but slightly tedious exercise to show that the metrics in Tod’s
article can be put into this form after a conformal rescaling (the main non trivial part
is to show that the 3-metric (d0? — 4dCdC /(1 + |¢]*)?)/ sin @ is the Lorentzian hyperbolic
metric).

Discussion:

1) It is possible to write down metrics that are Ricei flat with conformal structures that
extend over 5% x §?% but whose null infinity cuts the space in hall. This uses the same
construction but with a translation symmetry generated by #40/dw? where the real slice
is now given by real values for the components ol (w?, 7?). The gluing identifies w” — ¢ [x
on (C[P’i with w? + i fr on CP? where f := f(w?nm4,74) has homogeneity zero and is
rapidly decreasing as wn /(73 + 7f) — oco.

2) The analogous (general) construction for ASD Yang-Mills fields gives a correspondence
between ASDYM counections on M and pairs consisting of a holomorphic vector bundle
12 on CP® and a map P : £ — [ on the thickening of RP®. This gives a paradigm for
the inverse scattering transform with the bundle £ corresponding to the solitonic part of
the data and the map P corresponding to the ‘scattering data’. When ¢, of the buudic on
space-time is 0, I is trivial and the data is precisely a matric function P on R satisfying
P = P~ or alternatively P is a map [rom RP* 1o G¢/C.
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