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On The Dimension of Elementary States

In [5], Michael Singer proposed a definition for a four dimensional conformal field theory. In
this theory the role of compact Riemann surfaces, which occur in standard conformal field
theory, is played instead by compact flat twistor spaces. It is therefore tempting to ask
questions about these twistor spaces which are, in some way, natural extensions from Riemano
surfaces. The properties of compact Riemann surfaces are well known and have been
extensively documented and so there is an immensely rich source of possible questions that can

be asked about flat twistor spaces.

One such property of compact Riemann surfaces concerns meromorphic functions having poles
of prescribed maximum order at given points: Let X be a compact Riemann surface with
distinct points P, . . ., P,onX. Ifn,, .. ., n,_are arbitrary poéitivc integers, how many
linearly independent meromorphic functions are there on X, which have poles of order at most

n, at B,, and oo others?
To answer this question one can use the following strategy:

(@  Convert the question to on¢ involving global data.
This is achieved through the introduction of line bundies and divisors. The problem
then becomes one of determining the dimension of the cohomology group H°(X, $[D])

k
where [D] is the line bundle of the divisor D, which for the above problem is D_n.B.

i=1

(b} Use the Riemann-Roch theorem,
This enables holomorphic data to be calculated in terms of topological data: specifically
dim H(X, 9[D})-dim B'(X, 8[D]) =deg D + 1 - g, where g is the genus of X.
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(¢)  Use vanishing theorems for H'(X, $[D)) in order to eliminate the unwanted term.
One such is the Kodaira theorem: if deg(D) > 2g - 2 then HY(X $[D]) = 0.

To extend this problem to flat twistor-spaces we need a good analogue of meromorphic
functions with prescribed singularities. Fortunately a candidate for these exist, the elementary
states based on a line, but one first has to decide what is meant by a prescribed order of

singularity, and then how to extend this notion to a general flat twistor-space.

The first part of this question was answered by Eastwood and Hughston in [1]. If f(z) is

f(z)

homogeneous of degree m in z, and if f(z) is coprime to z, and z,, then —— is a representative
ZoZy

of an elementary state of homogeneity m ~ 2, with a pole of order 1 on the line z, =z, = 0.

Similarly, _fj_z_Z = L(ZZ has homogeneity (m + 1) - 4 =m - 3, and a pole of order 2 on
ZoZy (Zoz1)

Thus, at least in the case of P°, one can formulate the question: Given a fixed line L in #°, a

given homogeneity n, and a positive integer k, how many elementary states based on L are

there, with homogeneity n, and with a singularity on L of order at most k?

One way of converting this question, at least in ¥°, to one involving global data, was given

in [1]. Take the line L, blow-up P* along L, to obtain the complex manifold P. In this case
P is actually a submanifold of P* x P'. Now leta 20, b s -2, be integers, and form the
bundle $(a) ® S(b) on P* x P!, from 9(a) on P* and 9(b) on P'. Let 9(a,b) be the restriction
of this bundle to P3. Then it is shown in [1], that elements of H‘(f”, 9(a,b)), when restricted
away from the blown-up line, are representatives for elementary states based on L, of

homogeneity a + b, and order of singularity at most -b -1. The question now concerns the
dimension of HY(Z, 9(a,b)).
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This gives a way of extending the definition of elementary states based on a line, to flat twistor-
spaces, since such twistor-spaces have the property that each projective line (fibre) has a
neighbourhood which is biholomorphic to P,

Given a flat twistor-space Z, and distinguished Line L, one can then define the blow-up of Z
along L, say Z, and the bundle 9(a,b) can be defined on Z in such a way as to preserve the
essential properties of 9(a,b) in P?. Elements of H'(Z, 9(a,b)) then have homogeneity a + b
and a 'pole' of order at most -b -1 on L, when restricted away from L, but in a neighbourhood
of L.

We then define the elements of this group to be our elementary states based on L, with the
prescribed conditions, and the problem we wish to solve is to find the dimension of

HY(Z, 9(a,b)). This will give a partial answer to the equivalent problem in Riemann surfaces
which formed the motivation for this work.

The strategy for the solution follows closely that for Riemann-surfaces:

(a) The question has already been converted to one involving global data on a compact
manifold, though this time it is Z, not Z, ie. need to calculate dim H'(Z, 9(a,b)).

(b)  The Hirzebruch-Riemann-Roch theorem enables the calculation of the holomorphic
Euler characteristic of 9(a,b) on Z, using topological data {7].
This states that the holomorphic Euler characteristic x (Z , 9(a,b)), which is defined by

- 3 H . a~y -
% (Z, $@,b)) = D_(-1)' dim H(Z, 9(a,b)), is given in terms of Chern classes of Z, ie
1=0

dim H(Z, 8(a,b)) - dim H(Z, 9(a,b)) + dim HXZ, 9(a,b)) - dim H}(Z, 9(a,b))
= [cn(s(a,0) Td(2)] 2]
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where Ch(9(a,b)) is the Chern character of the bundle 3(a,b), and Td(Z) is the Todd
class of (the holomorphic bundle of) Z.

I was able to calculate this when M was a compact, oriented, Riemannian self-dual, 4-manifold,
and Z was its twistor space [2]. The method involved using Poincaré duality and intersection of
homology classes. I obtained the following results:

x(Z,S(a,b)) = le—(a +b+D(a+b+2)a+b+3)y
—-%(a +b+2)(a+b+1)a+b+3)~1]t

——é—b(b +1}b+3a+5),

where x is the Buler characteristic, and 7 — 0 in this case.

(c) Vanishing theorems.
There is more work to be done in this case since the alternating sum contains 4 terms.
In the case where the manifold M has negative scalar curvature, it is easy to show both
the H and H® terms are zero. This leaves H? as the awkward term.
The Serre dual of HXZ, 8(a,b)) can be calculated, and is HY(Z, $(-a-3,-b-1)). With
the given restrictions on a and b, this means that we have to deal with dimH’(Z,S(c,d))

wherec<-3,d= 1.

It turns out that, using diagram chasing techniques on two Mayer Vietoris sequences, I was able
to prove the following relationship between the cohomologies of the blown-up manifold Z, and
the flat twistor-space Z: if HY(Z, 8(c + d)) and H(Z, $(c + d)) both vanish, then

dim HY(Z, 9(c,d)) = dim H*(®™, 9(c,d)), and this would enable the final calculation to be
made [3].
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The question now turns on a vanishing theorem for H (Z, $(m)). For the case of M having
negative scalar curvature, I was then able to prove the following theorem: If M is compact,
Riemannian, self-dual, Einstein, with negative scalar curvature, then

HYZ, %m))=0ifm > 0, {4].

The method of proof used the Penrose transform to identify HY(Z, 9(n - 2)) with certain spinox
fields in M. This produced a Bochwer style vanishing theorem for the spinor fields. This result
was brought to my attention by C. LeBrun, from some work of his research student

(M. Thornber [6]) on vanishing theorems for quaternionic-Kihler manifolds. His method of
approach was completely different, involving a direct attack on the problem in Z, though his
proof did not cover the case of 4-dimensional manifolds M, only twistor spaces of 4k-

dimensional quaternionic-Kihler M.

This information provides an answer in the following case:

Let M be a compact, Riemannian, conformally-flat, Binstein manifold with negative scalax
curvature, and let Z be its twistor-space. If L is a distinguished line in Z and 2 2 0,

b <-2, witha + b < -4, then the number of elementary states with singularity on L, of order

at most -b -1 and homogeneity a + b, is given by
dim H'(®*, 9(-@ + b) - 4)) - %(Z, 8(a,b)).
We note that the M are precisely the hyperbolic 4-manifolds.

Details will appear anon.

I wish to express my gratitude to Stephen Huggett, Michael Singer and Paul Tod for all the
help, encouragement and guidance given to me in the course of this work, and to C. LeBrun for
pointing out the vanishing theorem, mentioned above.

Robin Horan
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