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Diagrams for tensor products of Hy, the discrete series representations of
SU(1,1) with lowest weight

One can take a representation theoretical view of free zero rest mass fields on Minkow-
ski space and look at them as vectors in certain “ladder representations” of SU(2,2)
[1],[2]. In this context it is natural to look at the SU(1,1) analogue first. There
one has the discrete series representations (., Hy); k € Z which are generated by a
lowest weight vector of weight |k| + 1, see [3]. In analogy to the twistorial realisation
one can realise these representations on spaces of sections of the bundles O(—1 + k)
over parts of P = CP!. Furthermore these realisations are unitary with respect to
< | >, the SU(1,1) analogue of the inner product of massless fields, and for k 7# 0
the two representations (wyr, Hyx) realised on O(—1 % k) are unitarily equivalent.
In the notation of [2](§10.3, equ. 26, with misprint) we realise the Hilbert spaces M,
as

(1) [H(PF,O(=1+ )/ HP,O(-1+ k)] _ |

where [...]< | >, denotes the Hilbert space completion with respect to < | >, .
H°(P,O(-1+ k)) has dimension maz(0,k). (H*(PT,O(-2 + k)), its SU(2,2) ana-
logue, vanishes for all k.) We have Hilbert space bases B for Hy in terms of elemen-
tary states (or K-finite vectors):
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where /11, C" € C** are such that

7 - _ |
1= A2+ AZ' =0= [=202'71<0,ic [Z]€P-CCP
(3) VA Z

C |
a11d£:0:> [Z] e PT C CP!.
It follows that
4 ) ) o - ,
(4) | = AgA° + A\A' = AgAg — A(A; >0 and | <0.
A c

IfCL =0, the SU(1, 1)-invariant positive definite inner product < | >, on Hj is given
by
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and the bases By consist of orthogonal vectors. Let
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(6) X=1+1,YVY=1] —1] ,2Z=1] —1|
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be generators of the SU(1,1) action 7 on Hy with commutation relations for X, Y, Z
corresponding to (‘1) (1)), (_Oi 8), ((', f'-) € su(l,1). Then Hy is generated by repeated

. C .
application of £, = X —:Y =2 to the lowest weight vector €}. One has
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(7) 760 = i(1 + |K)el, Zef ~ Z(Ey) e} = i(1 + [k| + 2n)(E4 )"}

because [Z, F,| = 21F,.

Tensor poducts and projection operators

In a way completely analogous to finite dimensional representations one finds with
straightforward algebra that under the action 7 ® m; the Hilbert space H; ® H,
decomposes into an orthogonal sum of invariant subspaces (Hy ® Hi),, n=0,1,...
on which 7y ® m is unitarily equaivalent to (7., , Ha,), an = 1+ k| + [{| + 2. In
abbreviated notation:

(8) Tk @ 71 = €D Trg 4 lil42n -
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For example, for k, ! < 0, a lowest weight vector x° with weight 2 — k — 1 + 2n is
given by
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One quickly establishes that E_x) = (X +1Y)x% = 0 and < ET X7 |E} X? >ret =0
for : #£ j or m # n.

Having twistor diagrams in mind it is then natural to ask:

1. Are there diagrams which, given the above realisation of (w;, Hi), have the
effect of projection operators

(10) PP M @ Hy — (He @ Hy)n ?

In other words, are there diagrams with in states |¢} >, |¢f > and out states
< Pil, < ¥}| attached which integrate to

(11) <P @Y P 4 ® ¢ > T
2. Can one compose such diagrams to construct projection operators
(12) Pf{,’.’[.’,’ﬁ:“ . Hkl @& Hki+1 — (- (Hkx ® Hk2)nl Q- Hk:‘“ )".‘

onto spaces of irreducible subrepresentations 7
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One could then think of such compositions as some kind of Young diagrams for the
representations (7, Hx) where the operators PX! replace (anti)symmetrisation op-
erations for finite dimensional representations, see (18),(19).

Of course there are several other questions one might address in this context. Ior
example, for k, [ > 1 equation (8) implies that one has SU(1,1)-module homomor-
phisms between Hi ® H; and Hi_1 ® Hiy1. Therefore one might want to construct
diagrams for these and for more general homomorphisms. Here we just want to assert
that SU(1,1) analogues of the higher dimensional twistor diagrams introduced in [4]
are of sufficient scope to allow realisations of P*! for all k,{,n.

For example let £ = [ = Q and set
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where D;; stands for both, the interior of the diagram or, alternatively, for the operator
corresponding to its integration over a contour in (C3%¥+7)2 x (C*C++9)2 with in and
out states ¢', ¢? and ', ? € Ho. Writing P, for P2°, one finds
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and, conversely, diagrams for the projections Py, P;,..., P, can be constructed as
linear combinations of {D;;}. 4= for m > n. In fact for the linear spans one has

(15) <APie}izo > = <{Dijligj=n > -

We write

P,

for a linear combination of diagrams D;; with the effect of P%°. With regard to
the second question, one can look at compositions of diagrams (13) and show that
there are standard contours for which integration yields results corresponding to the
composition of operators. For example, there is a contour for

|1 >— 1|
(16) b2 > <
|¢3 > : sl
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which gives
(17) <P @ PP’ (D3 @1) o (I®Dy) o (D1 ®I)¢' @ ¢* © ¢° >

where ¢!, ¢2, ¢* and ¥, ¥?, ¢® € Hy are arbitrary in and out states and Dy, D,, D5
are linear combinations of D;;’s of a fixed dimension (2 + j = n, fixed). Given this
structure, we are left with a purely algebraic question: Can we fill in the boxes in
~ (16) to obtain projections P97
Starting with a finite dlmenslonal analogue one can write symmetrisation s3 of three
indices in an obvious notation as
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Similarly, one finds that Fy o can be obtained as
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and, more generally, F , is obtained as ¢,

(20) B mH%

where

k : t (2¢ +¢)!
(21) Q,‘ :;(_1) t(k — )()Z+A+t+1)'

With ¢, = 2(n+1)* we obtain ¢,Q} = (n+1)%( — ﬁ—g P,41) and one verifies
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(22) ZPO, ZnPO@I[ H®Q.}l)o(Po®H):P0®H
n=0 n=0

because 3} 22 P, = I® 1.

How do we get F; , for 2 # 07 It turns out, for example, that there is no finite lincar
combination R = "N ¢, P, such that
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realises P;o. However, we can realise P, , up to a factor as

Pﬂ- }H-m Pﬂ

—

the factor being (n+m+1)?/(2n+1) . Finally, we can realise Py, . .., recursively as (some
factor times)
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This establishes the fact that combinations of (13) are sufficient to realise projections
onto irreducible subrepresentations of @"Hy . [ believe this will extend (with appro-
priate ’Dz?l) to arbitrary tensor products ®_Hx, .
Moreover, although the general combinatorics is much more involved for SU(2,2)
(having rank 3), for the ladder representation on
(25) VeI, = Ho = [H'(PT+,0(-2))] _
| >0
we still have a decomposition Ho ® Ho = B2o(Ho ® Ho)n . Substituting the cor-
responding projections P, into the above construction (24) we again get projections
from ®"H, onto irreducible subspaces, although no longer all of them. (See [5] for the
special case of P9-8.) This is analogous to the fact that Young diagrams for SU(2)
are also Young diagrams for SU(n), n > 2. The genral question therefore arises:
Can all projection operators for tensor products of the ladder representations of
SU(2,2) be built up as combinations of diagrams of the type (13)7 Is there a Young
diagram like algorithm 7

Much more work can be done ... [6].
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