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The Bach equations as an exact set of spinor fields

J. Frauendiener

Recently, L. J. Mason ([1], [2]) has proposed a reformulation of the “light-cone program”
originally due to E. T. Newman and C. N. Kozameh (see [3] for a recent review): in an
asymptotically flat vacuum spacetime the light-cone cuts of 7~ are taken as the fundamental
quantities and orne tries to impose the vacuum Einstein equations as one scalar equation for
the “cut function” which describes the cuts. In Mason’s formulation a prominent role is
played by the so called Bach equations. This is for the following reason: it has been shown
in [4] that a necessary and sufficient condition for a spacetime to be conformal to an Einstein
space is the validity of the following two equations on the Weyl and Ricci curvatures C,p.y

and Rg:

MO ped + wCopoy =0 for some w? (1)
Bbc = auadcubcd - %Radcabcd =0 (2)

The tensor B,; delined in (2) is called the Bach tensor and has the following properties:
lgab = Bba, Z)“Bab = 0, Baa = 0

In addition, it is conformally invariant. Any spacetime that is conformal to a vacuum
spacetime has to satisfy (1) and (2). Mason imposes B,, = 0 and studies the implications of
this equation on the cut function.

Here, we want to look at the properties of thie syster of partial differential equations given by
the spinorial version ol (1) and (2). In particular, we will show that the system is equivalent
to an exact set in the sense of Penrose [5].

Expressed in terms of the Weyl and Ricci spinors equation (2) is
OQ.OE,WABCD+(I>ABA,B:\DABCD:0. (3)

Note, that the first term is automatically symmetric in (A’B’). In the following we will use
a formalism described in [6] which is based on the isomorphism between totally symmetric
spinor fields on spacetime and homogeneous functions on the spin bundle over spacetime:

ba s plr) —odle,m,7)=¢, g pla)rd. . .aBrd 1B

A

may be considered as a coordinate along the fibers of the spin bundle. With 94 = 9/9r4
we construct the four covaviant derivative operators [ = 74x4d,, M = 74040400,
M' = 94V Dyp, N = 020V 0,4 0. The commutators between the derivative operators in-
volve the curvature operators S = w4780, 5, T = n4080,5, U = 04980 ,5, the Luler
operator f{ = r*d, and the wave operator 0. Finally, any algebraic operation consisting of
outer multiplication and contraction of spinor fields corresponds to a “C-tree”, a tree like
structure built up from the bilincar products Ce (¢, %), where & and & indicate the number

of contracted indices, ¢.g., Cy,(d,¢) — ¢AB,l,(c(cr(/)"‘B"'p,ﬂ)).



3¢

In this formalisn, the Bach cquations (2) read
M"Y 4+ 12C0(d, W) = 0. (4)

¢ and ¥ are the (2,2)- and (1,0)-lunctions corresponding to the Weyl spinor and the Ricci
spinor, respectively. In addition to (4) we also have to consider the Bianchi identities

MY =2MO,
No = -12LA.

Our first task is to find an equivalent set of first order equations. We start by introducing a
(3,1)-function A by MY = 2X and obtain the system

MY =24, MO =4, M'A = =6C, (9, 0),
Ny =0, NO=-12LA, NIX=0,
MY =0, M=),

The equations on A express equation (4) and the symmetry in the primed indices in (3).
We still need au equation lor MA. Inspection of the [M, M’] commutator gives a relation
between M A and OA. A similar such relation can be obtained from the operator identity

LN - MM = —(H'+ )T+ H(H' + 1)0 (5)

acting on V. However, in the present case, these two relations are exactly the same. There-
fore, we need to introduce another (4,0)-function x by M A = y and derive equations for y.
By homogeneity we have Ay =0 and Ny =0. Now the [M, M’] commutator and the above
identity acting on A give independent relations between M’y and O, which can be used to
derive an equation lor M’x. So we end up with the system

NO = —12[A, NA=0,
Mo =\, M=y,
MO = )\ M'A = —6C0(P, W),
N =0, Ny =0,
MY =0, My =0,
MY =2, M’y = 8C (D, LU) = 16C, o (LA, ¥) + SAA

+48C,,(D,A) = 12C,0( A, ).

This system is consistent, which can be seen by applying each of the commutators [M, A'],
[N, M] and [N, M'] to the four functions. This results either in expressions for the wave
operator acting on the [unctions or in identities. Obviously, any solution of the system gives
rise to a solution ol (1) and vice versa.

It is clear from the conlormal invariance ol the Bach equations that we do not get any
equation for the scalar curvature A. We can handle this situation in two ways: either we
enlarge the system by adding A to the variables and postulate an evolution equation like
OA = 0, or we consider A as a given function on spacetime. Both ways lead to the result that
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the system constitutes an exact set. The first case leads to an exact set which is also invariant
[5], while we can not expect to obtain an invariant exact set in the second case because A
and all its derivatives will enter in the expression for the unsymmetrized derivatives of the
fields in terms of the totally symmetric derivatives. Nevertheless, we will treat A (and all its
symmetrized derivatives LFA) as given.

The proof that our system is in fact an exact set consists of verifying two conditions:
(z) all powers of L acting on the functions are algebraically independent,

(i7) arbitrary products of operators L, M, M’ and N acting on the functions can be expressed
in terms of the powers L* acting on the functions.

The proof of condition (it) is a reprise of the proof that the vacuum Bianchi identity on
the Weyl spinor gives rise to an exact set ([6]). It rests on the fact that commuting the
derivative operators only introduces the powers L*A, the unknowns and the wave operator
whose action on the functions can be expressed as a C-tree containing only powers. In
addition, the right hand sides of the equations are C-trees in the variables so that when we
encounter any derivative operator other than L acting on a function we can replace it with
a C-tree.

As for condition (¢) again the same argument as in the case of the vacuum Bianchi identities
holds: the field equations impose couditions on all expressions of the form s,0¢, where s,
1s any string of length n in the derivative operators, O is any of the operators M, M’ N and
¢ stands for any of the unknowns. There are no restrictions on the expressions of the form
saL¢. Also, the commutator relations and relation (5) above only link expressions s, ¢ for
which the string does not cousist entirely of L’s. Therefore, in all the relations generated by
the commutators, identity (5) and tlie field equations there can never appear a power and,
hence, the powers are all independent. This proves exactness of the set of fields consisting
of the four functions ¥, &, A and y.

In this formal setting the characteristic initial value problem (or the Bach equations is well
posed. The initial data arve all the powers LKW, L¥® L5\ and L*y corresponding to the
totally symmetric spinor derivatives of the spinor fields at the vertex of the initial light cone.

Let us now assume that A and all its derivatives vanish. Additionally, we will assume that
we have existence and uniqueness of solutions to equations which give rise Lo an exact set.
This is certainly true in the formal sense. It is still not known whether the characteristic
initial value problent is well posed for any reasonable function space. Suppose we give ¥ and
all its symmetrized derivatives at the vertex of the initial light cone. Then evolution with
the vacuum Biauchi identity MW = 0 (which is an exact set) produces a vacuum spacetime
which necessarily provides a solution to the Bach equations. On the other hand, evolution of
the same initial data together with L¥¢ =0, L*y =0 and L*X = 0 with the Bach equations
gives a spacetime which is necessarily the same vacuum spacetime because of the uniqueness
of the solution. This argument shows that one obtains solutions to the vacuum equations
by appropriately restricting the initial data for the Bach equations.
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Abstract

An infinite hierarchy of non-local conservation laws is constructed for the self-dual vacuum
equations. Further, it is shown that the construction of such conserved currents has a natural

description in terms of Penrose’s non-linear graviton construction of such self-dual vacuum
metrics.
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