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There will be a conference on Twistor Theory from the 23rd to the 25th August 1993, in Devon.
The principal speakers are:

T N Bailey {Edinburgh) H Pedersen (Odense)

M G Eastwood (Adelaide) R Penrose (Oxford)

C LeBrun (SUNY) K P Tod (Oxford)

S A Merkulov {Odense) N M J Woodhouse (Oxford)

All are very welcome. There will be a registration fee of the order.of £25, and full board for the conference
will cost about £90.

For further details, please contact:

Dr S Huggett

School of Mathematics and Statistics

University of Plymouth

Drake Circus Telephone: (0752) 232720

Plymouth PL4 8AA FAX: (0752) 232780

England Email: P7 436@UK.AC.PLYMOUTH

The organisers are grateful lo the London Mathematical Sociely for financial support for this conference.



This is the second announcement of the

TWISTOR THEORY CONFERENCE

23rd - 25th August 1993, in Devon.

Programme:

22nd August Arrive in time for dinner at 8.00.

23rd August Roger Penrose "Twistors and the Einstein equations”
Claude LeBrun “Self-dual metrics on compact 4-manifolds”
Henrik Pedersen “Self-duality and the connected sums of complex

projective planes

Conference Dinner.

24th August Mike Eastwood "Twistors in Representation Theory"
Nick Woodhouse "Twistor theory and isomonodromy"
Toby Bailey "Conformal Invariants"

25th August Paul Tod "Self-dual Bianchi type 9 metrics"

Sergey Merkulov "Relative deformation theory and differential geometry"

Conference ends after lunch.

Travel information:

The conference is being held at our Faculty of Agriculture, Food, and Land Use at Seale-
Hayne, near Newton Abbot, in the South Hams of Devon.

By road, you take the M5 to Exeter and then the A38 and A382 to Newton Abbot, on the
outskirts of which you turn right to Ashburton on the A383. Seale-Hayne is then three miles
along this road on the right.

By rail, you take the Intercity train to Plymouth or Penzance from London or Edinburgh,
alighting at Newton Abbot station. The journey from London (Paddington) takes about three
hours, and there are trains arriving at Newton Abbot at 17.20 and 18.19 on Sundays. You
would be well advised to book a seat. Trains from Oxford and the "Railaic Coach” from
Heathrow take you to Reading, where you can join the Penzance or Plymouth train.

By air, you can fly Brymon European from Heathrow to Plymouth (19.45-21.25 on Sunday)
and retumn that way on Wedaesday (14.05-15.40 or 17.30-19.10).



Accommodation:
This will be in student single rooms in the main quadrangle. There is a very small number of

twin or double rooms.

Conference Dinner:

This will be at Buckland-Tout-Saints, Kingsbridge. The menu will cost £20.

Friends:
Please do not hesitate to bring family or friends to Seale-Hayne if you wish. No special events

have been arranged for them, but in fine weather Devon is very beautiful, and in particular
Dartmoor is only a few miles away from the conference, so bring walking gear.

Library:

A small collection of our favourite monographs and texts will be available for reference in the
Faculty library.

Communications:

The Faculty's fax number is 0626 325605 and its Reception's telephone number is 0626
325800.

Also, it will be possible to use e-mail while at the conference.

Cost:

The registration fee is £25, and full board from Sunday afternoon until Wednesday afternoon is

£91.50, all payable to the University of Plymouth. If you are coming to the conference dinner,
please deduct £8 from this figure.

The organisers are grateful to the London Mathematical Society for financial support for this
conference.



Registration:

The deadline for registration is the 9th of August. Please simply fax, telephone, e-mail, or
write to me, saying when and how you will arrive, whether you are coming to the conference
dinner, and which menu you would like.

Stephen Huggett

Twistor Conference

School of Mathematics and Statistics
University of Plymouth

Plymouth P14 8AA

Devon, UK

Telephone: 0752 232720

Fax: 0752 232780

E-mail: p07406@uk.ac.plymouth or p08181@uk.ac.plymouth

Kahler-Einstein metrics with SU(2) action.
Andrew S. Dancer!?, Ian A. B. Strachan®

! Peterhouse, Cambridge, CB2 1RD
2 DAMTP, Silver Street, Cambridge, CB3 9EW
3 Mathematical Institute, 24-29 St. Giles’, Oxford OX1 3LB.

Abstract

The aim of this paper is to analyse K&hler-Einstein metrics of real dimension four admitting
an isometric action of SU(2) with generically three-dimensional orbits. In the case when the
Einstein constant is zero the metrics are hyperkiller and have been classified. We shall take
the Linstein constant to be nonzero.

We derive a system of ordinary differential equations whose solutions correspond precisely
to such metrics, and we determine which trajectories of the equations give complete metrics.
There are two families of complete metrics with negative Einstein constant. One consists of the
U(2)-invariant metrics previously found by other authors. The other family consists of triaxial
metrics.
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The Orthographic Image of a Regular Tetrahedron

Michael Eastwood and Roger Penrose

Theorem Lour poiuts a, 4,7, € R* are the images of the vertices ol a
regular tetrahedron in R® under orthogonal projection R* — R? if and only
if

(a+ B +7+8)"=4lc’ + 5% +~" + 8% (L)

where «, 5,7, 0 are regarded as complex numbers.

Proof. It is easy to check that (1) s translation invariant, so we may as
well suppose that & = 0 aud that the prospective regular tetrahedron lias its
corvesponding vertex at the origin in R®. Oue possibility for the other three

vertices s

| l 0
L, 07, 1
0 1 !

Taking the projection to be onto the last two codrdinates we get, in this case,
o =1, B =1, y=1+4:1

and it 1s easy to check that
(o + 8 +7)" =4(a” + 5° +57) (2)

as required. The confornal orthogonal group may be double covered by the
group of mvertible 2 x 2 complex matrices of the form

a —=b
A = [1-) a]

acting by X — AXA on the space of Hermitian 2 x 2 matrices with zero
trace {cf. SU(2) = Spin(3)). Therefore, the general regular tetrahedron nmay
be obtained by allowing sucl a A to act on the matrices

T B S R (S
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and then picking out the top right hand entries. We obtain

A 1 1 T o= aﬁ—a@—b&'—ﬁ@ 20b + a* — b? ]

[1 —1] - abt+at—b  bb+ab+ ba— aa
NEEE ]Kt _ (a@—iab+iba—bb  2ab+ ia® + ib? ]
[4 —1 - 2b — i — bbb+ iab— iba — aa

A[ 0 1+z].A_¢ (G- — (i + 1)ab (i+1)a2+(i—1)bz]
=i 0 Tl -a@-(1+0b (1+i)ab+ (1 —i)ba

50

a=2ab+dat = b, B=2ab+ia’ +ibt, v =(i+ 1)+ (i — 1)

and, again, it is easy to check that (2) is satistied. Conversely (2) 15 exactly
the condition that «, 4,y may be written in this way for some «, b € C (since
every non-singular conic in CP, 1s rational). O

There are several variations ou this theme. ach simplex in R? gives rise to
a quadratic equation which characterises the orthographic mages of similar
simplices. For example, if a vertex of a cube is mapped to the origin and
its neighbours are sent to o, g,y € C, then o 4+ #* + v% = 0 (this is due to
Hadwiger [H], though not stated in this form using complex numbers). The
correspondiug equation for a regular dodecahedron is

(a+ B+ + (Vo= Do+ 5+ %) = 0.

There 15 a general theory for orthogonal projection R — R™ with an in-
terpretation m terms of complex numbers when m = 2. Details will appear

(‘Jh’(,‘\»\’ll(.'l‘l_‘.

Thanks are duc to H.S.M. Coxeter for drawing our attention to Hadwiger’s
article and to Jane Pitman for uselul conversations.

References

(1] 1. Hadwiger, Uber awsgezeichnete Vectorsterne und reguliare Polytope, Coimnn.
Math. Helv. 13 (1940), 90- 105,
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Indefinite, conformally-ASD metrics on S5%x5%
There is a natural, conformally-flat, indefinite metric on S2x5S2, namely

ds® = 4d¢df - 4dndf_ . 1
(+LH2 4=

From the way that this is written, it obviously has an integrable complex
structure J. Lowering J with the (indefinite) metric gives a 2-form which
therefore must be closed. The scalar-curvature of this metric is zero,
being the difference between the scalar curvatures of the summends, so that
(1) defines an indefinite, scalar-flat K8hler metric. The Weyl curvature is
therefore ASD (in fact this metric is conformally-flat) so it has a
twistor-space and we may look for a-planes in the complexification. Free
{,q from {,n respectively and write them as Z,%, then the equation

¢ = antb ; I =_dfi-c 2
cn+d -bf{+a

for (a b} € SL(2,C)/(1,~I) defines an a-plane. As a particular case of (2)
cd

the metric (1) has real a-planes given by (2) for fa b} € SU@)/(I,-1?

c d;
which is just RP3. Finally, there are some more a-planes missed by (2),
namely ones with {=const., n=const., and ones with {=const.,fi=const.. None
of these are real. The way these a—planes fit together to form the twistor-
space is described by Lionel Mason elsewhere in this issue.

At a recent seminar in Oxford, (26/1/93; see the accompanying article),
Lionel gave a fairly explicit picture of deformations of this twistor space
which must lead to deformations of the metric (1) i.e. to real,
conformally-ASD metrics with the ultra-hyperbolic signature (++--)
globally-defined on 52xS2. It is possible to modify the ansatz given by
Claude LeBrun in J.Diff.Geom. 34 (1991) 223 to find some of these metrics
explicitly, and this is what I want to describe here.
LeBrun's ansatz gives the general, scalar-flat, K&hler metric with S'-
action. Start with the metric in LeBrun's notation and switch some signs to
get the indefinite scalar-flat K&hler metric as

ds® = w(e(dx?+dy®) -dz2)~w™' (dep+w) 2. 3
With the change of signs, the field equations turn into

U, ¥ u,y, = (e . =0 4
and Were t Wy, — (wev ) . = 0. 5

There is also the equation for ©, which I will postpone giving.

Now take the solution of (4) given by
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ev =  4(-22%) 6
(1+x2+y2)2

and introduce V by V = w(1-z2)., (The quickest route to the solution (6) is
to demand that u be separable in the sense that u = f(x,y) + g¢z).)

In terms of 8, where z=cos8, and {=x+iy, the metric (3 becomes

ds® = 4V d¢dl - vd82 - sin(dg + @)* 7
+LH=2 v

while (5) turns into

(1+0H)RDRY = (1-z2) 22V, 8
Y414 oz2

To write the equation for ®, deferred from above, we first introduce angles
y,x by { = tan(y/2)exp(iy>. Then

do = (cscy dV dy —. siny dV dx) A csc8® d8 + siny csc8 dV dy » dy 9
ox oy b0

The (obvious) solution of (8,9) given by V=1 when plugged in to (3) gives
the metric (1) on S*xS= with which we began. For a nice way to write some
more, introduce Q by
Q =0V 10
bz

and differentiate (8) with respect to z to get an equation for Q. The
equation which results is the 'ultra-hyperbolic wave equation':

Vi2Q = Vo=Q 11

where the first Laplacian is on the {—sphere, the second is on the (8,¢)-
sphere and Q is independent of ¢ i.e. we get a metric for every
axisymmetric (in this sense) solution of (11),

To solve (11), use Legendre polynomials P, and associated Legendre
polynomials Y,:

Q= 2 8umYam G OP, (@)
substitute into (10) and integrate to get V:

Y4
V=14 380Yem(, 0] Potsids . 12
-1

With these choices, it turns out that V now equals 1 at z = #1, which you
need in order to avoid conical singularities in the metric (7). There
doesn't seem to be a nice formula for .

Thanks to Lionel Mason and Claude Lebrun,
Paul Tod
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Global twistor correspondences in split signature
L.J. Mason

Introduction

The purpose of this note is to describe the globalization of twistor correspondences in
signature (2,2). In particular I discuss the non-linear graviton construction for anti-self-dual
metrics of signature (2,2) on 5% x S* which specializes to give the twistor description of the
examples of conformally anti-self-dual metrics described by K.P.Tod 1n his accompanyiug
article in this issue. Part of the motivation for this construction arose from a desire to
understand the globalization of other aspects of the Penrose transform in signature (2,2)
and thereby give a twistor description of the Radon transtorm and the inverse scattering
transform. The connection of these ideas with the inverse scattering transform will be
discussed elsewhere.

When one considers boundary conditions for solutions of conformally invariant equa-
tions on R* in signature (2,2), the first condition one might try would be to require that
solutions should extend to the conformal compactification of R*, $? x S?/Z, as the equa-
tions are conformally invariant. We will see, however, that these boundary conditions
eliminate all solutions in hnear theory. This problem is resolved if we go to the double
cover, S* x §? (where one can ask the question as to which fields are invariant uuder the
Z, action).

The global geometry

The conformal compactification M of affine signature (2,2) Minkowski space, obtained by
adjoining a ‘light cone at infinity’, is the projective quadric in RP® given by the zero sct
of a quadratic form Q in R® ol signature (3,3). The conformal structure is determined by
asserting that the light coues of M are the intersections of M with the tangent planes ol
points of ML

To see that the topology of M is S* x S*/Z, diagonalize Q using a pair of Euclidean
J-vectors w and y as coordinates on R® such that Q = w-w — y - y. Set the scale by

requiting w-w = L so that y -y = | also on @ = 0; this yields S* x 5% in R®. However, in
RP, (w,y) ~ (~w,—y) so the topolgy ol ¢ =0 in RPF is S% x 5%/ Z,

The conformal structure is simply realized on the double cover M = §2 x §* by taking
the pullback of the round sphere metric d¥* on each factor and taking the dilference

ds® = prdQ? — pidQ*
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where py, p, are the projections onto the first and second factors vespectively. This is Z,
invariant and so descends to M.

The global correspondence

We will be interested in the cases where the original region on which the fields are defined
are simall complexifications of M and its double cover M (which will be denoted by the
same symbol). We will now consider the correspondence for these cases (or deformatiorns
thereof for ASD metrics).

The twistor space of a space U/ will be the spaces of connected components of (a-planes)
in U . For Z € PT(U), we will denote the correspouding a-plane in U by Z.

The correspondence for M

Just as compactified complexified Minkowski space CM is the the space of complex lines
in CP? via the complex Klein correspondence, M is the space of real lines in RP¥ via the
real Klein correspondence. In the context of the complex correspondence, point of M are
complex lines in CP* that intersect RP iu a real line. Alternatively, they are complex lines
in CP3 that are mapped into themselves by the complex conjugation Z — Z# given by
standard complex conjugation, component by component.

We have PT(M) = CP*. Given Z € CP° then il Z = Z, Z € RPF® and any real line in
RP® through Z corresponds to a point in M on Z. lu this case, Z intersects M in an RIP?,
If Z # Z then the complex line through Z and Z is real and corresponds to a point of M.
L fact the complex a-plane 7 intersects M in the unique point corresponding to this line.

Linear theory

The linear problem was completely solved in the case of the wave equation by Fritz-Johu
using the X-ray transform. In twistor notation, the general solution ol the hyperbolic
wave equation ou R* satistying appropriate boundary conditions can be obtained from the
mtegral formula

(}5(;1.“4‘4’) = %f(;l,‘AA,ﬂ'Ar, 7!"41)71"41(17@4'.

Herve fis a freely specifiable smooth sectiou of O{—=2) on RP’. That ¢ is a solution ol the
ultrahyperbolic wave equation follows by differentiation under the integral sign.

One might naively think that the function ¢ is naturally a function on the space of
lines in RP?, M. However, ¢ is defined by integrating f along lines and in order to perform
the integration, one needs to have an orientation of the line. This means that ¢ is actually
defined ou the space of oriented lines in RP3. This is Ml the double cover of M. Clearly ¢
changes sign under reversal of orientation of the line and so does not descend to M. Indeed,
we will see that there are no solutions of the conlormally invariant wave equation on M.

Remark: Actually, there is a possible confusion here owing to the Grgin phenomena-—the
real point is that these solutions are anti-Grgin. Solutions of the wave equation are sections
of O[—1], the inverse conformal weight bundle. Given just the metrvic ds® = pjdQ* — p3dQ*
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on 5% x 5§*/Z, there are two possible choices for O[—1], the trivial bundle or the Mobius
bundle. The correct choice as far as the twistor correspondence is concerned is the Mobius
bundle as this is just the restriction of the tautological bundle from RF’. The solutions
above are actually sections of the trivial bundle which is wrong as far as the twistor
correspondence is concerned. So one can simply write them down as even functions on

52 x 5% but as odd sections of O[—1].

The correspondence for M

We must therefore study twistor correspondences for M. We shall abuse notation and
denote also by M a small complex thickening of M. We have:

Lemma 0.1 [F"JI‘(M) is the (non-Hausdorff) space obtained by gluing together two copics
of CP*, denoted (C]P’i and CP®, together along some small thickening of RP® using the
wdentity map.

Proof: Points in the complement of (the thickening of) RPF® in CP° correspond to a-plancs
that intersect M in a topologically trivial vegion and these are necessarily covered by two
components in the double cover M. Whereas, points in the (thickening of) RPF® correspoud
to a-planes in (the small thickening of) M with topology RF? so that when one takes the
double cover the a-plane has topology S2.

Thus PT{M) double covers CP? over the complement of the thickening of RP* and the
double covering is glued together over the thickening of ]R[P’3

We reconstruct M as the space of complex lines in IP"]I'(M) that are cut into two pieces
by RP® with one piece lying in le’i’s and the other in CP3. This yields the space of
oriented lines in RP3 the line is given by the intersection of complex line with RP* and
the orientation is determined by multiplying the arrow from the intersection with CP* 1o
that with CP3 by ¢ and thereby rotating it by 90 degrees.

The non-Hausdorffness arises because as one varies an a-plane within M, it can break into
two disconnected parts. The points on the boundary of the glued down region are thie oues
with the non-Hausdorffly separated partner. This space is actually a deformation retract
of that counsidered in the discussion of sourced fields-——see for example the last chapier ol
Further Advances in Twistor T'heory Vol.1.

Complex conjugation

Complex conjugation on the small thickening of M sends o-planes to a-planes and hence
leads to a conjugation on PT(M). This covers the standard complex conjugation on CP’
that fixes RP® and is lifted to ]P"]]."(M[) by requiring that it interchange (CIPi and CP?. Thus
[Z] € CP? goes to [Z] € (ClP’i and the real lines ol the conjugation are those described
above that correspond to points of M.



The X-ray transform.

We can now understand the X-ray transform in this context. Solutions of the wave equation
on M correspond to elements of H'(PT(M), O(—2)). These can be studied by means ol
the Meyer Vietoris sequence using the covering of PT(M) by CP: and CP? . Using the fact

that H'Y(CP3, O(-2)) = 0 = H*(CP*,O(-2)) we find
HY(PT(M)) = H°(CP3 N CP?,0(-2)) = H(RP*,0(-2))

and the formula for the Penrose transform using these representatives is precisely the X-ray
transform.

Deformations of P'T(M)

The nonlinear graviton construction implies that (small) ASD deformations of the confor-
mal structure on S? x S? correspond to (small) deformations of ]P"]I‘(IV‘II). Since CP* is rigid,
the only deformable part is the gluing along RP®. In order to guarantee that the reality
structure is preserved, the gluing map P from som open set in (C[P’i to one in CP® must
be compatible with the conjugation that sends Z € CP3 to Z € CP?. This yields the
condition that P~ = P where P is the conjugate map. This can be arranged as follows.
Take a small analytic deformation p of the standard embedding of RP into CP? so that
p has a small analytic extension to a neighbourhood U of RP? in CP®. Then we also have
the conjugate embedding g of U into CP® which is the complexification of the complex

conjugate embedding (it is also holomorphic). The deformed gluing from CP? to CP? s

then done with the map P = pop~".

The complex conjugation map of the deformed glued down twistor space can then be
defined by sending the point Z € (C[P’i to the point Z € CP?. This conjugation clearly
fixes the image of RP?, is antiholomorphic and acts globally.

The space-time with deformed ASD conformal structure 1s then reconstructed by con-
structing the complex lines in the deformed space that are divided into two parts by the
glued down region and are half in (CIP’E:_ and hall in CP? .

Thus we have a | —1 map from ASD deformations of the conformal structure on 8% x S*
and such real gluing maps as above. These can be thought of as the space of (analytically)
cubedded RP*s in CP? or map{RP* — CP*}/Diff{RP’} as a diffeomorphism ol RP* does
not affect the final 2. This last space can be thought of as the space of complexilied
diffeomorphism modulo the real ones.

Examples: The examples that Paul Tod writes down in his article in this issue are obtained
from a split signature analogue of LeBrun’s hyperbolic Gibbons-Hawking ansatz, LeBrun
1991. The basic idea is to take a global holomorphic vector field on CP* that is real on
RP’ and to drag the standard gluing some fixed amount along the imaginary part of the
vector field. This is a global version ol the construction of Jones & Tod, (1935).

Use 2 x 2 matrices as homogeneous coordinates on twistor space with colummns (A, jea ).
The real slice RP? sits inside as PSU(2) with Ay the SU(2) conplex conjugate of yuq. The
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vector field V = iAg0/0X 4 — 11040/ 0p 4 corresponds to right multiplication by diagonal
SU(2) matrices. The quotient by the complexified vector field is the quadric ¢ coordina-
tized by ({Aal, [jta]) with real slice §%. Ou M the symmetry can be represented so that it
rotates just one ol the S? factors and leaves the other invariant.

Choose a real analytic function on S?, f([Aa], [1ta]) defined for Ay = fis and continue
it to some small thickening of the real slice. Then we dentily (exp(—f)Aa,exp(f)pa) in
CP3 with (exp(f)Aa, exp(—f)pa) in CP? where [A4] and [ja] arve close to being conjugate.
Thus, if we take out the lines Ay = 0 and g4 = 0, the twistor space P7T is a complex line
bundle over the space @ obtained by gluing one copy of the quadric Q4 to another Q_
over some thickening of the real slice.

The space-time metric is given in standard form in Jones & Tod (1985) as

ds* = di)g + (do + w)2/\/'2

where here d¥3 is the Einstein-Weyl space corresponding to the quadric which is just
Lorentzian hyperbolic space and w and V' are the parts of an invariant ASD U(1) connection
that are respectively orthogonal and tangent to the synunetry direction and thus satisly
dw = x3dV where x4 is the hodge dual with respect to d¥3.

It is a straightforward, but slightly tedious exercise to show that the metrics in Tod’s
article can be put into this form after a conformal rescaling (the main non trivial part
is to show that the 3-metric (d0? — 4dCdC /(1 + |¢]*)?)/ sin @ is the Lorentzian hyperbolic
metric).

Discussion:

1) It is possible to write down metrics that are Ricei flat with conformal structures that
extend over 5% x §?% but whose null infinity cuts the space in hall. This uses the same
construction but with a translation symmetry generated by #40/dw? where the real slice
is now given by real values for the components ol (w?, 7?). The gluing identifies w” — ¢ [x
on (C[P’i with w? + i fr on CP? where f := f(w?nm4,74) has homogeneity zero and is
rapidly decreasing as wn /(73 + 7f) — oco.

2) The analogous (general) construction for ASD Yang-Mills fields gives a correspondence
between ASDYM counections on M and pairs consisting of a holomorphic vector bundle
12 on CP® and a map P : £ — [ on the thickening of RP®. This gives a paradigm for
the inverse scattering transform with the bundle £ corresponding to the solitonic part of
the data and the map P corresponding to the ‘scattering data’. When ¢, of the buudic on
space-time is 0, I is trivial and the data is precisely a matric function P on R satisfying
P = P~ or alternatively P is a map [rom RP* 1o G¢/C.
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On The Dimension of Elementary States

In [5], Michael Singer proposed a definition for a four dimensional conformal field theory. In
this theory the role of compact Riemann surfaces, which occur in standard conformal field
theory, is played instead by compact flat twistor spaces. It is therefore tempting to ask
questions about these twistor spaces which are, in some way, natural extensions from Riemano
surfaces. The properties of compact Riemann surfaces are well known and have been
extensively documented and so there is an immensely rich source of possible questions that can

be asked about flat twistor spaces.

One such property of compact Riemann surfaces concerns meromorphic functions having poles
of prescribed maximum order at given points: Let X be a compact Riemann surface with
distinct points P, . . ., P,onX. Ifn,, .. ., n,_are arbitrary poéitivc integers, how many
linearly independent meromorphic functions are there on X, which have poles of order at most

n, at B,, and oo others?
To answer this question one can use the following strategy:

(@  Convert the question to on¢ involving global data.
This is achieved through the introduction of line bundies and divisors. The problem
then becomes one of determining the dimension of the cohomology group H°(X, $[D])

k
where [D] is the line bundle of the divisor D, which for the above problem is D_n.B.

i=1

(b} Use the Riemann-Roch theorem,
This enables holomorphic data to be calculated in terms of topological data: specifically
dim H(X, 9[D})-dim B'(X, 8[D]) =deg D + 1 - g, where g is the genus of X.
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(¢)  Use vanishing theorems for H'(X, $[D)) in order to eliminate the unwanted term.
One such is the Kodaira theorem: if deg(D) > 2g - 2 then HY(X $[D]) = 0.

To extend this problem to flat twistor-spaces we need a good analogue of meromorphic
functions with prescribed singularities. Fortunately a candidate for these exist, the elementary
states based on a line, but one first has to decide what is meant by a prescribed order of

singularity, and then how to extend this notion to a general flat twistor-space.

The first part of this question was answered by Eastwood and Hughston in [1]. If f(z) is

f(z)

homogeneous of degree m in z, and if f(z) is coprime to z, and z,, then —— is a representative
ZoZy

of an elementary state of homogeneity m ~ 2, with a pole of order 1 on the line z, =z, = 0.

Similarly, _fj_z_Z = L(ZZ has homogeneity (m + 1) - 4 =m - 3, and a pole of order 2 on
ZoZy (Zoz1)

Thus, at least in the case of P°, one can formulate the question: Given a fixed line L in #°, a

given homogeneity n, and a positive integer k, how many elementary states based on L are

there, with homogeneity n, and with a singularity on L of order at most k?

One way of converting this question, at least in ¥°, to one involving global data, was given

in [1]. Take the line L, blow-up P* along L, to obtain the complex manifold P. In this case
P is actually a submanifold of P* x P'. Now leta 20, b s -2, be integers, and form the
bundle $(a) ® S(b) on P* x P!, from 9(a) on P* and 9(b) on P'. Let 9(a,b) be the restriction
of this bundle to P3. Then it is shown in [1], that elements of H‘(f”, 9(a,b)), when restricted
away from the blown-up line, are representatives for elementary states based on L, of

homogeneity a + b, and order of singularity at most -b -1. The question now concerns the
dimension of HY(Z, 9(a,b)).
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This gives a way of extending the definition of elementary states based on a line, to flat twistor-
spaces, since such twistor-spaces have the property that each projective line (fibre) has a
neighbourhood which is biholomorphic to P,

Given a flat twistor-space Z, and distinguished Line L, one can then define the blow-up of Z
along L, say Z, and the bundle 9(a,b) can be defined on Z in such a way as to preserve the
essential properties of 9(a,b) in P?. Elements of H'(Z, 9(a,b)) then have homogeneity a + b
and a 'pole' of order at most -b -1 on L, when restricted away from L, but in a neighbourhood
of L.

We then define the elements of this group to be our elementary states based on L, with the
prescribed conditions, and the problem we wish to solve is to find the dimension of

HY(Z, 9(a,b)). This will give a partial answer to the equivalent problem in Riemann surfaces
which formed the motivation for this work.

The strategy for the solution follows closely that for Riemann-surfaces:

(a) The question has already been converted to one involving global data on a compact
manifold, though this time it is Z, not Z, ie. need to calculate dim H'(Z, 9(a,b)).

(b)  The Hirzebruch-Riemann-Roch theorem enables the calculation of the holomorphic
Euler characteristic of 9(a,b) on Z, using topological data {7].
This states that the holomorphic Euler characteristic x (Z , 9(a,b)), which is defined by

- 3 H . a~y -
% (Z, $@,b)) = D_(-1)' dim H(Z, 9(a,b)), is given in terms of Chern classes of Z, ie
1=0

dim H(Z, 8(a,b)) - dim H(Z, 9(a,b)) + dim HXZ, 9(a,b)) - dim H}(Z, 9(a,b))
= [cn(s(a,0) Td(2)] 2]
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where Ch(9(a,b)) is the Chern character of the bundle 3(a,b), and Td(Z) is the Todd
class of (the holomorphic bundle of) Z.

I was able to calculate this when M was a compact, oriented, Riemannian self-dual, 4-manifold,
and Z was its twistor space [2]. The method involved using Poincaré duality and intersection of
homology classes. I obtained the following results:

x(Z,S(a,b)) = le—(a +b+D(a+b+2)a+b+3)y
—-%(a +b+2)(a+b+1)a+b+3)~1]t

——é—b(b +1}b+3a+5),

where x is the Buler characteristic, and 7 — 0 in this case.

(c) Vanishing theorems.
There is more work to be done in this case since the alternating sum contains 4 terms.
In the case where the manifold M has negative scalar curvature, it is easy to show both
the H and H® terms are zero. This leaves H? as the awkward term.
The Serre dual of HXZ, 8(a,b)) can be calculated, and is HY(Z, $(-a-3,-b-1)). With
the given restrictions on a and b, this means that we have to deal with dimH’(Z,S(c,d))

wherec<-3,d= 1.

It turns out that, using diagram chasing techniques on two Mayer Vietoris sequences, I was able
to prove the following relationship between the cohomologies of the blown-up manifold Z, and
the flat twistor-space Z: if HY(Z, 8(c + d)) and H(Z, $(c + d)) both vanish, then

dim HY(Z, 9(c,d)) = dim H*(®™, 9(c,d)), and this would enable the final calculation to be
made [3].
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The question now turns on a vanishing theorem for H (Z, $(m)). For the case of M having
negative scalar curvature, I was then able to prove the following theorem: If M is compact,
Riemannian, self-dual, Einstein, with negative scalar curvature, then

HYZ, %m))=0ifm > 0, {4].

The method of proof used the Penrose transform to identify HY(Z, 9(n - 2)) with certain spinox
fields in M. This produced a Bochwer style vanishing theorem for the spinor fields. This result
was brought to my attention by C. LeBrun, from some work of his research student

(M. Thornber [6]) on vanishing theorems for quaternionic-Kihler manifolds. His method of
approach was completely different, involving a direct attack on the problem in Z, though his
proof did not cover the case of 4-dimensional manifolds M, only twistor spaces of 4k-

dimensional quaternionic-Kihler M.

This information provides an answer in the following case:

Let M be a compact, Riemannian, conformally-flat, Binstein manifold with negative scalax
curvature, and let Z be its twistor-space. If L is a distinguished line in Z and 2 2 0,

b <-2, witha + b < -4, then the number of elementary states with singularity on L, of order

at most -b -1 and homogeneity a + b, is given by
dim H'(®*, 9(-@ + b) - 4)) - %(Z, 8(a,b)).
We note that the M are precisely the hyperbolic 4-manifolds.

Details will appear anon.

I wish to express my gratitude to Stephen Huggett, Michael Singer and Paul Tod for all the
help, encouragement and guidance given to me in the course of this work, and to C. LeBrun for
pointing out the vanishing theorem, mentioned above.

Robin Horan
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Diagrams for tensor products of Hy, the discrete series representations of
SU(1,1) with lowest weight

One can take a representation theoretical view of free zero rest mass fields on Minkow-
ski space and look at them as vectors in certain “ladder representations” of SU(2,2)
[1],[2]. In this context it is natural to look at the SU(1,1) analogue first. There
one has the discrete series representations (., Hy); k € Z which are generated by a
lowest weight vector of weight |k| + 1, see [3]. In analogy to the twistorial realisation
one can realise these representations on spaces of sections of the bundles O(—1 + k)
over parts of P = CP!. Furthermore these realisations are unitary with respect to
< | >, the SU(1,1) analogue of the inner product of massless fields, and for k 7# 0
the two representations (wyr, Hyx) realised on O(—1 % k) are unitarily equivalent.
In the notation of [2](§10.3, equ. 26, with misprint) we realise the Hilbert spaces M,
as

(1) [H(PF,O(=1+ )/ HP,O(-1+ k)] _ |

where [...]< | >, denotes the Hilbert space completion with respect to < | >, .
H°(P,O(-1+ k)) has dimension maz(0,k). (H*(PT,O(-2 + k)), its SU(2,2) ana-
logue, vanishes for all k.) We have Hilbert space bases B for Hy in terms of elemen-
tary states (or K-finite vectors):

{ c n+k/ A\ 1+n o forkZO,
(2) Bi = {%gn/ (Ag%zn_k _ =: {62(’?’?)}n=0

1 ( oo fork <0
VA A

o0

where /11, C" € C** are such that

7 - _ |
1= A2+ AZ' =0= [=202'71<0,ic [Z]€P-CCP
(3) VA Z

C |
a11d£:0:> [Z] e PT C CP!.
It follows that
4 ) ) o - ,
(4) | = AgA° + A\A' = AgAg — A(A; >0 and | <0.
A c

IfCL =0, the SU(1, 1)-invariant positive definite inner product < | >, on Hj is given
by

n+k
(_1)n+k ﬁ":_“'_ﬁ 5nm (C) / (? for k Z 0

|
o

n 14n—k
(-~ (72—1.)751”71 (?) / (?) for £ <0

C

(5) < €i(A,C)]€ef(4,C) »=
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and the bases By consist of orthogonal vectors. Let
C A .C LA .C A
(6) X=1+1,YVY=1] —1] ,2Z=1] —1|
84 aC 34  8C ac 24
be generators of the SU(1,1) action 7 on Hy with commutation relations for X, Y, Z
corresponding to (‘1) (1)), (_Oi 8), ((', f'-) € su(l,1). Then Hy is generated by repeated

. C .
application of £, = X —:Y =2 to the lowest weight vector €}. One has
04

(7) 760 = i(1 + |K)el, Zef ~ Z(Ey) e} = i(1 + [k| + 2n)(E4 )"}

because [Z, F,| = 21F,.

Tensor poducts and projection operators

In a way completely analogous to finite dimensional representations one finds with
straightforward algebra that under the action 7 ® m; the Hilbert space H; ® H,
decomposes into an orthogonal sum of invariant subspaces (Hy ® Hi),, n=0,1,...
on which 7y ® m is unitarily equaivalent to (7., , Ha,), an = 1+ k| + [{| + 2. In
abbreviated notation:

(8) Tk @ 71 = €D Trg 4 lil42n -

n=0

For example, for k, ! < 0, a lowest weight vector x° with weight 2 — k — 1 + 2n is
given by

n I\ . :
©) 8=3 0 ()ded
1=0

One quickly establishes that E_x) = (X +1Y)x% = 0 and < ET X7 |E} X? >ret =0
for : #£ j or m # n.

Having twistor diagrams in mind it is then natural to ask:

1. Are there diagrams which, given the above realisation of (w;, Hi), have the
effect of projection operators

(10) PP M @ Hy — (He @ Hy)n ?

In other words, are there diagrams with in states |¢} >, |¢f > and out states
< Pil, < ¥}| attached which integrate to

(11) <P @Y P 4 ® ¢ > T
2. Can one compose such diagrams to construct projection operators
(12) Pf{,’.’[.’,’ﬁ:“ . Hkl @& Hki+1 — (- (Hkx ® Hk2)nl Q- Hk:‘“ )".‘

onto spaces of irreducible subrepresentations 7
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One could then think of such compositions as some kind of Young diagrams for the
representations (7, Hx) where the operators PX! replace (anti)symmetrisation op-
erations for finite dimensional representations, see (18),(19).

Of course there are several other questions one might address in this context. Ior
example, for k, [ > 1 equation (8) implies that one has SU(1,1)-module homomor-
phisms between Hi ® H; and Hi_1 ® Hiy1. Therefore one might want to construct
diagrams for these and for more general homomorphisms. Here we just want to assert
that SU(1,1) analogues of the higher dimensional twistor diagrams introduced in [4]
are of sufficient scope to allow realisations of P*! for all k,{,n.

For example let £ = [ = Q and set

6! >t P
(13) 7 =<y @ Y| Dy 4" @ ¢* >
|¢? >E——< PP

where D;; stands for both, the interior of the diagram or, alternatively, for the operator
corresponding to its integration over a contour in (C3%¥+7)2 x (C*C++9)2 with in and
out states ¢', ¢? and ', ? € Ho. Writing P, for P2°, one finds
(14) Do~ Y 1
O )i+ 1+ n)!
i+1 :
1+ 1—n(n+1
Dil ~ Z " ( ( )) n
= e+ 1-=n) (1424 n)!
Diy ~ - - -

n

9

and, conversely, diagrams for the projections Py, P;,..., P, can be constructed as
linear combinations of {D;;}. 4= for m > n. In fact for the linear spans one has

(15) <APie}izo > = <{Dijligj=n > -

We write

P,

for a linear combination of diagrams D;; with the effect of P%°. With regard to
the second question, one can look at compositions of diagrams (13) and show that
there are standard contours for which integration yields results corresponding to the
composition of operators. For example, there is a contour for

|1 >— 1|
(16) b2 > <
|¢3 > : sl
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which gives
(17) <P @ PP’ (D3 @1) o (I®Dy) o (D1 ®I)¢' @ ¢* © ¢° >

where ¢!, ¢2, ¢* and ¥, ¥?, ¢® € Hy are arbitrary in and out states and Dy, D,, D5
are linear combinations of D;;’s of a fixed dimension (2 + j = n, fixed). Given this
structure, we are left with a purely algebraic question: Can we fill in the boxes in
~ (16) to obtain projections P97
Starting with a finite dlmenslonal analogue one can write symmetrisation s3 of three
indices in an obvious notation as

B B el L IR

‘32 - 5&2 —

(12':—_—><

|

(18) 3 —%3

T

Similarly, one finds that Fy o can be obtained as

-

Bl — |
1) o

1

B

and, more generally, F , is obtained as ¢,

(20) B mH%

where

k : t (2¢ +¢)!
(21) Q,‘ :;(_1) t(k — )()Z+A+t+1)'

With ¢, = 2(n+1)* we obtain ¢,Q} = (n+1)%( — ﬁ—g P,41) and one verifies

B S

2n+1

(22) ZPO, ZnPO@I[ H®Q.}l)o(Po®H):P0®H
n=0 n=0

because 3} 22 P, = I® 1.

How do we get F; , for 2 # 07 It turns out, for example, that there is no finite lincar
combination R = "N ¢, P, such that

Py P

—— — — 1 A
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realises P;o. However, we can realise P, , up to a factor as

Pﬂ- }H-m Pﬂ

—

the factor being (n+m+1)?/(2n+1) . Finally, we can realise Py, . .., recursively as (some
factor times)

— s —

T Py, [7] LT T Py [\
I A RS | Poc [ T s Ja

[} )

This establishes the fact that combinations of (13) are sufficient to realise projections
onto irreducible subrepresentations of @"Hy . [ believe this will extend (with appro-
priate ’Dz?l) to arbitrary tensor products ®_Hx, .
Moreover, although the general combinatorics is much more involved for SU(2,2)
(having rank 3), for the ladder representation on
(25) VeI, = Ho = [H'(PT+,0(-2))] _
| >0
we still have a decomposition Ho ® Ho = B2o(Ho ® Ho)n . Substituting the cor-
responding projections P, into the above construction (24) we again get projections
from ®"H, onto irreducible subspaces, although no longer all of them. (See [5] for the
special case of P9-8.) This is analogous to the fact that Young diagrams for SU(2)
are also Young diagrams for SU(n), n > 2. The genral question therefore arises:
Can all projection operators for tensor products of the ladder representations of
SU(2,2) be built up as combinations of diagrams of the type (13)7 Is there a Young
diagram like algorithm 7

Much more work can be done ... [6].
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Some new formulas in conformally invariant scattering

The following results were prompted by Franz Muller's work. They fill in
some gaps which have been left in the more elementary theory of
scatterings which are conformally invariant and free from divergence
problems. The common idea, which FM has systematised, is that of thinking
of an scattering of zero-mass-fields as an operation on an appropriate
space of fields.

The first question is what happens if we follow one such operation on two
fields with another such operation.

Spectfically, I restrict to scalar fields and conformally invariant scatterings.
I shall use the symbol to denote the scattering specified on
momentum states by

'%? Z'% ) k.. k3>5(k4k,k-—\<v>

| 2
Here [ might be any function on [0,1] not necessarily the restriction of an
analytic function {and allowing delta-functions, etc.)
Then we have a convolution 5°F defined by

Clearly it must be possible to give gof directly in terms of { and g. Explicit
calculation in momentum space shows the relation can be written as:

9 ‘,(W) S dw&x/ K (u, v, w) ,F(w)jf\/)

—

Z 1 g 2
- —_—V —W UV w
where K(u,v,w) = J,T (zuv&sz + Zwvl W —vV Y }

O 3! Khee anrvaMt f< O.

By considering this formula in terms of projections on to the eigenspaces of

spin (as used by FM extensively), it can be shown equivalent to the
identity

1 (- xl'«ngzz %2157,)/2-
S (2ar) P 0 Patp Pl2)
o

2\

i they Ardecw*y < O
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which must have been well-known long ago {(though it wasn't to me )

-\ -
| cosO C/0J¢ 2 ;
Cas© | @"Y 7z’ﬂ[f_\\z_(_\1;g1:)

C°I¢ (’W'V \

We can also write this as:

-

271

é(?n)c )P (w3 0) P (ws $) P,\(w,’\*) -
" O

where (_\r , Qa, 03 are the vectors joining the centre of a unit sphere to
the vertices of a spherical triangle with sides @/ ¢/ q{/

(the argument of the square root is negative &> no such spherical
triangle exists)

One may use this result (or rather its space-like analogue) to show that in
the case where the [ and g scallerings are represented by the twistor

integrals

respectively.

Cint O 0ve)
o
r(?*ﬂ*z)

i.e. the convolution fog does correspond to “joining the boxes together™ in
the obvious way. This improves our theory of the “double box™ diagram.

A second topic arose from the Feynman to twistor diagram correspondence
N\ !

& .
= i ¢ S(Aﬂ{r.»«ﬂ.

N

One can think of this twistor diagram as an operation which projects out
the spin-0 part of the product of three zr m. scalar fields. FM, using his
techniques, was able to interpret its asymmetric form in algebraic terms.
This prompted the question of generalisation to n such fields. To do this
first note that this twistor diagram can be thought of as composed of three
more elementary operations, thus:



1%

where xoi corresponds to the scatlering operation on two fields
delined by taking f(u) = |, and Q 1o that with [(u) = u, represented
by twistor diagrams /

/

respectively

More generally now define

to be the scattering operation defined by f(u) = ufl,

which can be represented by twistor dragram

Then 1t turns out that the projection of the spin-0 part of the product of n
zr.m. scalar fields can be performed (up to a combinatorial factor) by a
composite of operations drawn here explicitly in the case n=% and by
obvious analogy for general n:

Its remarkable that the complete operauon 1s actually symmetric in the n
tingomg s felds. This formula opens new approaches (o finding twistor
diagram analogues of certain higher order Feynman tree dragrams.

Andrew Hodges
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The Bach equations as an exact set of spinor fields

J. Frauendiener

Recently, L. J. Mason ([1], [2]) has proposed a reformulation of the “light-cone program”
originally due to E. T. Newman and C. N. Kozameh (see [3] for a recent review): in an
asymptotically flat vacuum spacetime the light-cone cuts of 7~ are taken as the fundamental
quantities and orne tries to impose the vacuum Einstein equations as one scalar equation for
the “cut function” which describes the cuts. In Mason’s formulation a prominent role is
played by the so called Bach equations. This is for the following reason: it has been shown
in [4] that a necessary and sufficient condition for a spacetime to be conformal to an Einstein
space is the validity of the following two equations on the Weyl and Ricci curvatures C,p.y

and Rg:

MO ped + wCopoy =0 for some w? (1)
Bbc = auadcubcd - %Radcabcd =0 (2)

The tensor B,; delined in (2) is called the Bach tensor and has the following properties:
lgab = Bba, Z)“Bab = 0, Baa = 0

In addition, it is conformally invariant. Any spacetime that is conformal to a vacuum
spacetime has to satisfy (1) and (2). Mason imposes B,, = 0 and studies the implications of
this equation on the cut function.

Here, we want to look at the properties of thie syster of partial differential equations given by
the spinorial version ol (1) and (2). In particular, we will show that the system is equivalent
to an exact set in the sense of Penrose [5].

Expressed in terms of the Weyl and Ricci spinors equation (2) is
OQ.OE,WABCD+(I>ABA,B:\DABCD:0. (3)

Note, that the first term is automatically symmetric in (A’B’). In the following we will use
a formalism described in [6] which is based on the isomorphism between totally symmetric
spinor fields on spacetime and homogeneous functions on the spin bundle over spacetime:

ba s plr) —odle,m,7)=¢, g pla)rd. . .aBrd 1B

A

may be considered as a coordinate along the fibers of the spin bundle. With 94 = 9/9r4
we construct the four covaviant derivative operators [ = 74x4d,, M = 74040400,
M' = 94V Dyp, N = 020V 0,4 0. The commutators between the derivative operators in-
volve the curvature operators S = w4780, 5, T = n4080,5, U = 04980 ,5, the Luler
operator f{ = r*d, and the wave operator 0. Finally, any algebraic operation consisting of
outer multiplication and contraction of spinor fields corresponds to a “C-tree”, a tree like
structure built up from the bilincar products Ce (¢, %), where & and & indicate the number

of contracted indices, ¢.g., Cy,(d,¢) — ¢AB,l,(c(cr(/)"‘B"'p,ﬂ)).
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In this formalisn, the Bach cquations (2) read
M"Y 4+ 12C0(d, W) = 0. (4)

¢ and ¥ are the (2,2)- and (1,0)-lunctions corresponding to the Weyl spinor and the Ricci
spinor, respectively. In addition to (4) we also have to consider the Bianchi identities

MY =2MO,
No = -12LA.

Our first task is to find an equivalent set of first order equations. We start by introducing a
(3,1)-function A by MY = 2X and obtain the system

MY =24, MO =4, M'A = =6C, (9, 0),
Ny =0, NO=-12LA, NIX=0,
MY =0, M=),

The equations on A express equation (4) and the symmetry in the primed indices in (3).
We still need au equation lor MA. Inspection of the [M, M’] commutator gives a relation
between M A and OA. A similar such relation can be obtained from the operator identity

LN - MM = —(H'+ )T+ H(H' + 1)0 (5)

acting on V. However, in the present case, these two relations are exactly the same. There-
fore, we need to introduce another (4,0)-function x by M A = y and derive equations for y.
By homogeneity we have Ay =0 and Ny =0. Now the [M, M’] commutator and the above
identity acting on A give independent relations between M’y and O, which can be used to
derive an equation lor M’x. So we end up with the system

NO = —12[A, NA=0,
Mo =\, M=y,
MO = )\ M'A = —6C0(P, W),
N =0, Ny =0,
MY =0, My =0,
MY =2, M’y = 8C (D, LU) = 16C, o (LA, ¥) + SAA

+48C,,(D,A) = 12C,0( A, ).

This system is consistent, which can be seen by applying each of the commutators [M, A'],
[N, M] and [N, M'] to the four functions. This results either in expressions for the wave
operator acting on the [unctions or in identities. Obviously, any solution of the system gives
rise to a solution ol (1) and vice versa.

It is clear from the conlormal invariance ol the Bach equations that we do not get any
equation for the scalar curvature A. We can handle this situation in two ways: either we
enlarge the system by adding A to the variables and postulate an evolution equation like
OA = 0, or we consider A as a given function on spacetime. Both ways lead to the result that
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the system constitutes an exact set. The first case leads to an exact set which is also invariant
[5], while we can not expect to obtain an invariant exact set in the second case because A
and all its derivatives will enter in the expression for the unsymmetrized derivatives of the
fields in terms of the totally symmetric derivatives. Nevertheless, we will treat A (and all its
symmetrized derivatives LFA) as given.

The proof that our system is in fact an exact set consists of verifying two conditions:
(z) all powers of L acting on the functions are algebraically independent,

(i7) arbitrary products of operators L, M, M’ and N acting on the functions can be expressed
in terms of the powers L* acting on the functions.

The proof of condition (it) is a reprise of the proof that the vacuum Bianchi identity on
the Weyl spinor gives rise to an exact set ([6]). It rests on the fact that commuting the
derivative operators only introduces the powers L*A, the unknowns and the wave operator
whose action on the functions can be expressed as a C-tree containing only powers. In
addition, the right hand sides of the equations are C-trees in the variables so that when we
encounter any derivative operator other than L acting on a function we can replace it with
a C-tree.

As for condition (¢) again the same argument as in the case of the vacuum Bianchi identities
holds: the field equations impose couditions on all expressions of the form s,0¢, where s,
1s any string of length n in the derivative operators, O is any of the operators M, M’ N and
¢ stands for any of the unknowns. There are no restrictions on the expressions of the form
saL¢. Also, the commutator relations and relation (5) above only link expressions s, ¢ for
which the string does not cousist entirely of L’s. Therefore, in all the relations generated by
the commutators, identity (5) and tlie field equations there can never appear a power and,
hence, the powers are all independent. This proves exactness of the set of fields consisting
of the four functions ¥, &, A and y.

In this formal setting the characteristic initial value problem (or the Bach equations is well
posed. The initial data arve all the powers LKW, L¥® L5\ and L*y corresponding to the
totally symmetric spinor derivatives of the spinor fields at the vertex of the initial light cone.

Let us now assume that A and all its derivatives vanish. Additionally, we will assume that
we have existence and uniqueness of solutions to equations which give rise Lo an exact set.
This is certainly true in the formal sense. It is still not known whether the characteristic
initial value problent is well posed for any reasonable function space. Suppose we give ¥ and
all its symmetrized derivatives at the vertex of the initial light cone. Then evolution with
the vacuum Biauchi identity MW = 0 (which is an exact set) produces a vacuum spacetime
which necessarily provides a solution to the Bach equations. On the other hand, evolution of
the same initial data together with L¥¢ =0, L*y =0 and L*X = 0 with the Bach equations
gives a spacetime which is necessarily the same vacuum spacetime because of the uniqueness
of the solution. This argument shows that one obtains solutions to the vacuum equations
by appropriately restricting the initial data for the Bach equations.
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Hierarchy of Conservation Laws for Self-Dual Gravity

Ian A. B. Strachan
Mathematical Institute, 24-29 St. Giles’, Oxford OX1 3LB.

Abstract

An infinite hierarchy of non-local conservation laws is constructed for the self-dual vacuum
equations. Further, it is shown that the construction of such conserved currents has a natural

description in terms of Penrose’s non-linear graviton construction of such self-dual vacuum
metrics.

To appear: Classical and Quantum Gravity
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Twistor classification of type D vacuum space-times
Thomas von Schroeter

In the framework of the Yang-Mills twistor approach, stationary axisymmetric space-times
can be characterized in terms of holomorphic rank 2 bundles over projective twistor space
(Ward 1983). lf the space-time extends analytically into a neighbourhood of an axis or horizon,
then the patching data of the corresponding bundle consist of a single 2 x 2 matrix

P(2) :% (-1/’0 fg——‘:‘/)(;/)g)

holomorphic in z which is entirely determined by the values of the associated Ernst potential

E(z,r) = f(z,r) +1W(z,7) 5 folz) = f(2,0), wo(z) = ¥(z,0)

on the axis/horizon r = 0 (Woodhouse and Mason 19838, Fletcher and Woodhouse 1990). The
patching matrices for the Weyl solutions — i.e. those type D metrics for which the induced
metric J on the space of Killing vectors can be diagonalized (w = 0'in (1) below) - were
derived in an earlier note in TN 35. This note is concerned with the non-diagonal case, for
which the metric takes the full stationary axisymmetric form

2
flz,r)
Here, f, w, and € are real analytic functions on a Riemann surface ¥ with complex co-
ordinate w = z + ir which is the space of orbits of the Killing vectors, 9/0t (timelike) and

0/00 (spacelike). The imaginary part ¢ of the Ernst potential is determined (up to an additive
constant) by :

ds? = f(z,r)(dt = w(z,r)d8)" — d6* — (z,7) (d=% + dr?) . (1)

2

dy = o dw (2)
ded¢+d(r*d_ffi):0, (3)

and .
0ulog (£0°) = Z(0,E)OE) ., (4)

where d is the exterior derivative and * the star operator on ¥. The existence of such a function
Y is a consequence of the vacuum equations for the metric (1).

As before, our approach is based on the fact that all type D vacuum space-times have

Killing spinors of valence 2 (Walker and Penrose 1970). Equations (3)-(5) of the earlier note
remain valid, but now with

(R ) an ().

—fw f B
where # = (,dz + 3,dr is a complex! one-form on ¥, and translate into
3 dE

'Unlike the Weyl case, the equations which § has to satisfy, i.e. {5)-(7), are not real and thus g, and 3,
cannot be taken to be real functions.



dE dr .
B — 1[jr 1 8!1/(/)

0y, log 017 3T (Ta)
ﬁz + lﬂr . 1 0w¢’

Expanding all quantities near the axis (or horizon), r = 0, and eliminating from (2)-(7) all
functions but Eo(z) = E(z,0), one finds that Fy satisfies the same simple ODE that fo(z) has
to satisfy in the case of the Weyl solutions:

SESVEY —4(EM? =0. (8)

Using the freedom 2z + 2z + const. , ¥ +— 1 + const. , and ¥ — ) + const. 2 (all constants
real)?, the general solution of (8) can be reduced to

Bo(z)= {1 T ezt if £ =0
0 alz+ib) ' fc+dz fEY#0

where a,y € C, b,c,d,e,g € R. As a (positive) real overall factor in £ can be incorporated
into the metric components by homothetic transformations in the space of Killing vectors, the
two sets of parameters, [y, €, ¢] and [a, ¢, d], can be regarded as homogeneous coordinates of the
solution spaces, and thus there are at most 4 real parameters. This is, of course, the expected
number for the general type D vacuum (acceleration, rotation, mass, and NUT parameter).

One of the most prominent examples is Kerr space-time. Fletcher and Woodhouse (1990,
eqn. (55)) find
22 —m? +a? 2am
g WYolz)=— ————
(z4+m)?2+a (z4+m)?+a?
where m and a are, respectively, the mass and angular momentum parameter, and a < m.
Replacing z + m by z, one obtains Ey(z) = 1 — 2m(z ~ ia)~! and thus

Jo(z) =

a=-2m, b=—-a, c=1, d=0.

Further examples are under investigation. One of the aims is, of course, to relate the
parameters to physical properties of the space-times.
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?The freedom to make these changes arises, respectively, from the definitions of z and ¥ in terms of their
differentials (> 1s the “harmonic conjugate” of r on ¥) and from the freedom to make linear transformations
in the space of Killing vectors.
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