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Another view at the spin (3/2) equation

Jorg Frauendiener

In this note [ want to draw attention to another point of view for the spin (3/2)
equations which have been discussed in various places because they might provide a
way of defining twistors for curved but Ricci flat spacetimes (see [4], [3], [2]). The
two main properties are that the consistency condition for the existence of solutions
are the vacuum equations G,, = 0 and that in flat space twistors emerge as the
charges of the fields.

Here I want to focus on the equation
8A(A'7§'t)3 =0 (1)

and show how it relates to the point of view in [3]. In particular, I will show how to
obtain “charges” in a consistent way also m curved spacetimes. Recent work with
George Sparling [1] shows that equation (1) has the following properties (among
others): it is consistent in arbitrary curved spacetimes, i.e., the Cauchy problem is
well posed; it 1s conformally invariant and can be obtained from the action

A= Illl {/‘/QIBIOA,A’@?} E

As 1t stands (1) is insensitive towards the vacuum equations because it has
solutions on arbitrary manifolds. Let me denote the solution space of (1) by [3/2]
and the solution spacc of the Weyl neutrino equation by [1/2]. Note, that the
Weyl equation also has a well posed Cauchy problemi on arbitrary mamifolds. In
flat space we have the following structure relating these solution spaces. Given any
solution of {1) we obtain a solution of the neutrino equation by taking its divergence:
OB vl € [1/2] for all y € [3/2]. Call this map N : [3/2] - [1/2]. On the other hand,
given v4 € [1/2] we can obtain a solution of (1) by taking a symmetrized derivative,
8&{‘,‘1/3) € [3/2] for all v € [1/2]. Call that map L : [1/2] - [3/2]. It is casy to see that
im L c ker N. So we get a sequence of maps

[1/2]- [3/2] -5 [1/2] (2)

which 1s not exact. In fact, from a crude argument, counting free functions for the
Cauchy problem, it can he seen that [3/2] is characterized by six free functions of
three variables whercas [1/2] amounts to two free functions. This shows that ker N
amounts to four functions so that there are two free functions-that do not correspond
to the image of L. This can be made more precise using the Fourler representation
of solutious of (1) in flat space.



If we now ask how much of this sequence can be carried over to curved manifolds
we find that the L-part can only be defined if the tracefree part of the Rical tensor
vanishes, i.e., only on spacetimes with $,, = 0 will the dervative of a neutrino field
be a solution of equation (1). Similarly, the divergence of a solution of equation (1)
will be a solution of the Weyl equation only if ¢,, = 0. If, in addition, we insist
on the property that im L ¢ ker N then also the scalar curvature has to vanish. In
summary then, we find that we have the same sequence (2) iff Gy, = 0.

At this stage, the natural question to be asked is, of course: why do the Einstein
equations favour this structure? Surprisingly, it is exactly this structure that is
necessary to define “charges” as surface integrals in the curved case. Recall, that
equation (1) arises from a variational principle. This means that its solution space
comes equipped with a natural symplectic structure. The symplectic form on [3/2]
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The integral is taken over a hypersurface H. It is hypersurface independent because
the integrand is closed iff the «’s satisfy equation (1).

If we think of {1/2] as inducing transformations on [3/2] via v~ v + Lv, then
we may ask for the Hamiltonians that generate these transformations. This means
that we have to solve the equation

w(Llv,y) = -6H,(v) for all v € [3/2] (3)

for H,, given v € [1/2]. Now the left hand side is
Im/@“}uB)fyg'H'EAA,
which 1s equal to (up to factors)
Im/ DvB A58 8 S 0p,

2 arp being the selfdual two-forms ou"spacetime and D being the covariant exterior
derivative. Integrating by parts we find that the left hand side of (3) is

w(Lv,vy) = Im/ vBAR BT pge — Im/ VB DAAB AL e,
OH H

consisting of a hypersurface integral and a two dimensional boundary integral. Ex-
amination of the hypersurface integrand shows that it is equal to (UAOB 74 B'EAA:)

This shows that this integral will vanish iff we restrict ourselves to the subspdce of
[3/2] consisting of divergence free solutions of (1). The Eiustein equations ensure
that [1/2] acts on ker N. The upshot of all this is that provided the Einstein equa-
tions hold, we have an action of {1/2] on the symplectic submanifold ker N which



1

can be considered as gauge transformations. The corresponding Hamuiltonians or
“chiarges” are given by the surface mtegral

HU(’Y) = Illl/ I/B’_YE}’B(ZA1317
oH

where now v is restricted to be a divergence free solution of (1), i.e., a solution of
the equation 044742 = 0.

Let us now see how this fits in with the flat space expression for the charges in
[3]:

a= [ nbpmcn
N

where Y ypicr = Gpp¥p o is the helicity (3/2)-field defined by ¥ and pA’ is the

primary part of a dual twistor (p?',\4), so O4au? = ie4B' Ay and Faarp = 0.
Consider now the complex one-form o = Y4 g 412’044, Then

dOl = 831 (;}’A/C/Ap,lcl) EAB + 8§, (’?AaclA/JLCI) EA'B'
= (81/3":7/1’0%) /LLC’ZAB + 5’,4/01/1 (aélucl) EAB
+ (0 Awcra) BE AP+ Gacua (04 ) TP
The first two terms vanish because of (1) and the twistor equation and so
do = wA’B’C’/J‘CIEAIB/ + Z’,?AIBIA/\AEA’Bt .

Integration over K shows that the flat space expression and the symplectic expres-

sion for the charges agree up to signs and taking the imaginary part if we identify
vA and \A.

All this looks cncouraging but there are still many open questions. Why do
we get only an imaginary part m the symplectic charge mtegral? How do twistors
appear in the curved space formula? What is the role of the solution v/ of the Weyl
equation in relation to the projection part of a dual twistor? Maybe sonie of these
questions can be answered once the role of the second potential has been clarified.
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