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A higher spin generalization of the Dirac equation
to arbitrary curved manifolds

Jorg Frauendiener

In this note I want to discuss a class of equations that can be considered as
generalizations of the Dirac equation to higher spin fields. There have already been
several proposals to this end (see [2] and references therein). The present approach
grew out of joint work with George Sparling on higher spin massless spinor fields. In
[1] we considered spinor fields of the type ¥48-& with p primed and p+ 1 unprimed
mndices subject to the equation

Daapl S =0. (1)

For p = 0 this is just the Weyl equation for a neutrino.

We were able to show that this equation has the following properties:
o There exists a variational principle which yields (1).
e The equation i1s conformally invariant.
o In flat space the solutions to (1) satisfy the equation (3’*'+) = 0. This equation is
the key to the theory of these massless fields and althougl it is not strictly hyperbolic
(only if p = 0) one can still give existence and uniqueness proofs.
e The Cauchy problem for (1) 1s well posed: given initial data on a spacelike hy-
persurface S, then there exists a strip N = S x [-7,T] on which (1) has a unique
solution with the specified initial values.
o There exists an equivalent exact set for equation (1), i.e., the characteristic initial
value problem is formally well posed.
o The system coupled to gravity via G, = 87T, forms an exact set as well.
e The general solution i flat space is characterized by a totally symmetric dual
twistor ¢a,..q,(ka, ka) defined on the future null cone of the origin of Minkowski
space. There is some gauge freedom left: let I, be the operator pair (ka,0/0k,.),
then @o,. o, + (0,7, o,) defines the same solution as ¢a,. .a, -
e More m the spirit of the twistor programme we have the result that analytic
solutions of (1) are described by the sheaf cohomology group HY(U,O(p,p)) for
suitable domains m twistor space. O(p,p) is the sheaf of germs of rank p totally
symmetric covariant tensors on projective twistor space taking values in O(p).

Using the same type of spinor fields one can write down a system of equations
which extend the Dirac equation and which have several of the above properties:
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The first thing to note 1s, of course, that for p = 0 this 1s just the Dirac equation in
two-component spinor notation. As in that case, we have as many complex equations
as we have unknown complex functions, namely 2(p + 1)(p + 2). Next, it is casy
to see that therc are no constraints to be satisfied on an initial spacelike surface.
If we decompose the covariant derivative operator mto a timelike part D and a
spacelike part Dap = Dga with respect to a unit tunelike covector field t 44/, 040 =
taaD + t8 D,ap, then none of the equations is purely spatial. lLe., all equations
contaiu the tunelike derivative D.

In order to analyze the situation further [ want to introduce the homogeneous (in
7A, A" functions ¢ = Y5 cp cmATB . 7CxB' | 7¢" and x defined in a similar
way. Also we define the derivative operators L = nAn4 04, M = 1404044, M' =
A7 Dy 4 and N = 049494 4. Then it is easy to see that the system (2) can be

written as
M'p = -pux,
My =—py.

The derivative operators obey certain commutation relations involving the curvature
of spacetime and the wave operator. In flat space these relations are trivial apart from
[L,N]¢ = -Hp+p'+2)0¢, [M,M') ¢ = - 1(p-p')0¢ and the relation LNp- M M'$ =
sp(p' +1)0¢ for a function ¢ with homogeneities (p, p’).

(3)

Using this formalism it 1s quite easy to derive the following curious result for the
flat case, which is the analogue to the “key equation” in the massless case mentioned
above.

Theorem: If (1, x) 1s a p-solution, i.e., functions with resp. homogeneities (p+1, p)
and (p,p+1) satisfying the system (3) then they also satisfy the equation (m? = 2u?):

(D+”L2)(D+%>'”(D+(T;’:T)2>¢:O’ (4)

Proof: The proof 1s by induction on p. For p = 0 we have the Dirac system and so we
obtain (O +m?2)y = (A4 m?)y = 0. Suppose the clain is true for p-solutions and let
(1, x) be a (p+1)-solution. Then (N, Nx)is a p-solution because N conunutes with
M and M'. Therefore, defining P = [T0_, (0 +m?/(j + 1)?), we have P(Ny) = 0.
Since L commutes with O and usiug the relation above we also have 0 = P(LNy) =
P(MM' + §(p+2)?0)yp. Using (3) we finally obtain [TP2 (O +m?/(j + 1)*) ¢ = 0.

The same argument applies to v and so the proof is complete.

So the fields (3, x) represent some kind of “mass multiplet”. In the curved case
the right hand side is no longer zero but contains (derivatives of ) the curvature and
lower order derivatives of the fields. Just like in the massless case, the differential
operator on the left hand side 1s not strictly hyperbolic. It is, however, the product
of strictly hyperbolic operators. This property enables us to use the existence theory
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of Leray and Ohya [3] to prove local existence and uniqueness of solutions to the
Cauchy problem for this system (the details will be given elsewhere).

In the same way as in [1] we can also prove that there exists an equivalent exact
set for the system (2) and thus we arrive at the statement that the characteristic
initial value problem is formally well posed. The null data to be prescribed consist
of the following fields

{M‘~J‘NJ‘¢, M"INIy:0<l<p,0<j< 1}

which makes (p + 1)(p + 2) freely specifyable functions. This is in agreement with
the observation that the number of characteristic data is half the number of Cauchy
data. In order to make the same statement for the system coupled to gravity, we
need to define an energy momentum tensor for (2). But this is easily done, once we
have established a variational principle. Consider then the four-form

£ = I {4 % DaeavhPS - X8 % OauniP S + () AP ST

where ¥ is the volume form of spacetime. Then we define the action Ay, ¥, x, X, 0% =
fuyr £- The dependence on a tetrad (or more appropriately the canonical one-form
of the bundle of orthonormal frames) 6 is mmplicit in ¥ and via the torsion free
condition also in the connection. Varying A with respect to ¥ and y yields the
system (2), variation with respect to ¥ and x gives the complex conjugate system
and the variation with respect to 8¢ coutains the energy momentum tensor. This is
explained in more detail in [1].

Using the Einstemn equation G, = 877, we can cousider the tracefree part of
the Rical tensor ¢, and the scalar curvature A as expressed in terms of the fields
P, x and their first derivatives. Then adding the Bianchi identity

) _oB
0¥ apcp = 9 %cpyap

to the system, we can prove the existence of an equivalent exact set for tlie coupled
system using the same type of recursive argument as in [1]. This will also be given
in detail elsewhere.

The system (2) 1s another example of a system that is not symnetric hyperbolic
but still gives rise to an exact sct.

Finally, I want to briefly discuss the structure of the solution space of the system
(3) in the flat case. This, however, should be considered only as a presentation of
preliminary results. Let me denote by [p] the space of p-solutions of (3). Given a
p-solution we cau construct a (p + 1)-solution by taking a symmetrized derivative,
i.e., by applying the operator L. Thus L{p ~ 1] ¢ [p]. On the other hand, taking
the divergence of a p-solution by applying N results in a (p — 1)-solution and so
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Nip] c [p-1]. Let (¢,x) be a p-solution and consider the identity LNy ~ M M) =
s(p+ 1)y, Using (3) we get LN = L(p+ 1)2 (O +m?/(p+1)?) ¥ and so we find
that the operator (O +m?/(p+ 1)?) wmaps a p-solution into the nnage of L.

The following picture thercfore emerges: i [p] there exists a distinguished class
of solutions, the unage of [p ~ 1] under the map L. These are considered as “unim-
portant” or gauge and we consider each p-solution as beiuT defined only up to an

element of L{p - 1]. This leads to the factor space F, = [p] Lip- 1] Since O com-
wutes with L it maps Llp — 1] into itself and is therefore a well defined operator
on Fy, and we can define the Klemn-Gordon operator O + 5%2175 on Fy. Due to the
calculation above this operator vanishes identically on £,. So we are led to consider
the elements of the factor space F}, as the higher spm analogues of the Dirac wave
functions. They do fit nto this picture because they are in the trivial factor space
oy -
{0} |

Although there exist solutions to the system (2) on arbitrary curved manifolds,
it remains to be seen how much of this factor space structure can be carried over to

curved manifolds. Work on this 1s still in progress.
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