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Update on the massive propagator in twistor diagrams

Here follows a sketch of recent developments regarding mass, following on
from the ideas described in TN 32 for a possible solution to the problem of
describing the massive Feynman propagator in terms of standard twistor
diagram elements. The general idea there was to make finite sense of each
term in the formal expression:
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by using the Barnes integral representation of the Feynman propagator
function as evaluated on suitable test-fields, and then to find twistor
integrals corresponding to each such term. The key new idea was to exploit
the {@_rkoperties of the inhomogeneous bHoundary at infinity, i.e. a boundary
on XZ=mor WY = m, rather than use the poles ( X2-m ), (E’ -m)!
which had featured in my 1985 paper. This gets us from the “on-sheil”
amplitudes, ie. Hankel functions satisfying the Klein-Gordon equation, to
the more grown-up propagator “off-shell” functions. This is a particularly
satisfactory idea because since 1985 it has become clear that boundaries of
this kind are essential elements of the diagram formalism.
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The scheme I indicated in TN32 was that (]

should correspond to the twistor integral
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and 1 checked that the terms for n=0, n=1, were correct. One needs to
choose k = exp (- ¥ ), where ¥ is Euler's constant, if the mass parameter
entering into the boundary specification is 1o be the same as that occurring
in the formal power series (though this is not essential.) It seems
something of a miracle that the n=1 term can be made to agree by a
suitable contour choice: this is not something that follows just from its
satisfaction of a differential relation.

Recently Stephen Spence has checked my calculations, and gone on to
consider the case of n=2. He finds in that case the correct terms plus an

unwanted extra term which is a multiple of kym‘

The same feature occurred in my earlier (1985) work. That is, [ worked out
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and found terms of this kind arising which prevented the correct Hankel
function being formed. Indeed by considering the operation %
WA

which turns the boundary into a pole, one can see that these unwanted
terms must acise in the new context.

In the 1985 work I found a way of getting rid of these terms, but at the
cost of changing the diagram formalism. In those days it was not so clear
how the inhomogeneous elements ought to be defined, and it seemed all
right to abandon the natural "boundary” definition for a logarithmic
expression. What I found can be expressed like this: we could get the right
Hankel function if the (—n)-line were to be re-defined as
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Now this expression is crying out for the limit € — o to be taken, and
indeed it's only in the € =0 limit that we get exactly the right answer.
Unfortunately the contours disappear at that limit!

It is fairly clear that the same thing could be applied in the new context.
That is, if we were to use these logarithmic expressions, now attached to
the inhomogeneous boundary, we should lose the unwanted terms and
regain just the Feynman propagator function.

But what are we to make of these logarithmic factors, and of the contour
that disappears in the limit? This has required a sequence of new ideas.

1. A contour re-emerges if we add another boundary line, ie take the
combination
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This suggests that the logarithmic factors can be supplied as required by
taking o A P _n >

This is not quite the case, as in fact this is Ator
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However, these extra terms don't affect the subsequent integration and so
it seems that
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gives the Feynman propagator function. The expression for we—e=—=0—2
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and it's defined entirely by the two features: ‘
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These two properties ensure that 0 "’fr/\\/\/:v;:’v"/h 2 = W\éﬂf
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aand it follows from this that@) solves the inhomogeneous Klein-Gordon
equation.

3. These observations succeed in giving us a scheme in which only
standard diagram elements play a role. However a further development
gets us much closer to a more fundamental picture in which the nth twistor
diagram corresponds to the picture of n successive interactions with the

constant Higgs field. PN
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as one can see by an integration-by-parts argument. This might suggest
that
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but in fact the requisite contours do not seem to exist for this. Instead, one
must again add in further boundary lines. I have got as far as showing that
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by a method that should extend to the nth case. The upshot of this idea
would be that each term in the series is represented by a diagram like
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which could then be modified to take correct account of the spin-projection
which has so far been neglected, and to adapt to the case of spins other
than zero.

It is encouraging that these contour-integral techniques are similar to those
used by me and Lewis O'Donald in earlier work on ultra-violet divergences
(his article in TN32, and his thesis). This suggests to me that the problem
of representing general Feynman diagrams will be solved by exploiting
these same ideas.
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