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Spin 3/2 fields and local twistors

L.J. Mason & R.Penrose

1 Introduction

In TN's 31 and 33 one of us (RP) proposed that helicity 3/2 fields might provide a suitable
vehicle for the definition of a twistor in vacuum space-times. On the one hand, in flat space-
time, twistors emerge as the charges of helicity 3/2-fields, and on the other, the vacuum
equations are the consistency condition for the existence of such fields (in potential form,
e.g. that given by Rarita-Schwinger) so that they can exist only when the field equations
are satisfied.

There are still fundamental obstacles. The difficulties of defining charges in curved
space were discussed in Penrose (1992). However, there are intriguing issues that are
already present in a flat background. We have to deal with the description of the field
as a potential modulo gauge rather than as field. (The helicity 3/2 ‘field’ associated with
a Rarita-Schwinger potential is not gauge invariant in curved space.) Thus, a deeper
examination of the R-S potential, its gauge {reedomn, and its relation to twistor theory
should prove fruitful.

A neat form of the R-S equations can be given in terms of spinor-indexed forms. Let
o4 be a spinor-indexed 1-form and d be the exterior derivative extended to act on spinor-
indexed quantities. Then the gauge freedom is 04 — o4 + dvy where vy is a spinor-
indexed f{unction, and the R-S equations are

dz? A do g = 0. (1.1)

One can see directly that the gauge transformatious will be cousistent with the field equa-

tions iff
de* A dPug = de? A RE,IVA: =0

for all v4.. This follows ifl the Ricei tensor vanishes (this is effectively the same calculation
as that required to show that the Sparling 3-form is closed when the vacuum equations
are satislied—see Penrose & Riudler 1986, Vol 2 chapter 6). There are 8 equations for
8 unknowns, and two [rec functions worth of gauge {reedom, so we require two relations
between the field equations for thie system to be consistent (this can be seen by removing
two of the unknowus using the gauge freedom to set, for example, V]os = 0 for some
vector field V so that there are 2 more equations than unknowns). The relations follow by
taking the exterior derivative of (1.1). This vanishes identically iff dz#4" A RE, = 0 so the
cquations are consistent mn vacuu.



In flat space, the field is given by

i 4
da’A: fad '(/)A;BlcfdeBB A dl‘g

and is gauge invariant, but in curved space a gauge transformation will add ¥ 4 picipi””
to Y4, making it non-invariant.

Since the helicity 3/2 field is only directly descibed in potential form in curved space,
in Penrose (1992), a description of charges was given that only involves the potential. We
shall consider the general case with a 1-forin potential v for the dual field *F' possibly
taking values in some flat vector bundle. Introduce a covering of the relevant region of
space-time M by open sets {U;}. The (dual) field on this region is equivalent to a collection
of potentials v; on each U; such that dv; = *F so that on U; N Uj, v and ~; differ by a
gauge transformation (the collection {v;} are taken to be defined modulo global gauge
transformations). The charge associated with {7;} takes values in the space of gauge
freedom of the second kind. For electromagunetism, this formulation follows from the de-
Rham sequence for potentials of the dual field

0—+C— EM)— QM) — QM) — ...

where £(M) is the space of smooth functions on M and the second map is the injection of
constant functions and the third and subsequent maps are the standard exterior derivative.
The charge g of an electromagnetic field is obtained by integrating the (closed) 2-form *F
over some given 2-surface, S. The closed 2-form "I is equivalent to a collection {7} with
v € QYU;) and d(y: — ;) = 0 on U; (U, defined up to y; — v; +df; for some f; € C°(M).
By diagram chasing (or direct integration), one can sce that g lies in the C of the above
sequence playing the role of a gauge transformation of the sccond kind, whicl is to say a
gauge transformnation that leaves the potential invariant. This follows by defining f; by
7 —v; = dfi;. 1t then follows, with gijx = fi; + fjx — fu, that dgix = 0 so gji is a Cech
cocycle with constant coeflicients and one can see that its evaluation on S is the charge
(up to the usual 47 etc.).

This point of view for helicity 3/2 ficlds led to a new difficulty even in flat space: if one
only has the Rarita-Schwinger field, then the analogue of the above sequence is now

0—-}SA:~—)£A;——)QI,—>Q2,——),_.

where the third and fourth maps are the covatiant exterior derivative. The problem is that
the gauge transformatious of the second kind are just coustant spinors S 4 whercas we were
hoping to obtain a whole twistor. This spinor is the secondary part of the charge of the
correspouding helicity 3/2 field. In Penrosce (1992,1994) it was noted that if one wishes to
encode the primary part of the chiarge, one requires the next potential down the potential
chain. A proposal for an exact scquence involving this second potential in the R-S case
was also given in Penrose (1994).

The purpose of this note is to give an improved version of this sequence, with unre-
stricted gauge frecdom, aud relate it to local twistors.



2 Local twistors and the helicity 3/2 equations

In Woodhouse (1985) and Mason (1990) it was noted that the potential chains for zero
rest mass fields have a natural formulation in terms of local twistors. Perhaps the simplest
formulation of the potential chain for the helicity 3/2 equation is as follows

A B c
Yapior = VA/UBfC'A, TAA'B' = VA'PB'AB, PABA' = vAl¢ABC

where each poteutial is a symmetric spinor, and is subject to field equations and gauge
freedom (cf. Penrose and Rindler vol. 2, section 6.4).

A slightly different formulation of the potential chain, without its first and last parts,
can be encoded in a local-twistor-valued 1-form with n — 2 symmetric indices for helicity
n. This is easily understood from the positive homogeneity twistor-function description:
for helicity 3/2 one takes a dual twistor function R of homogeneity one and then evaluates
R* = OR/OW, as a self-dual Maxwell Field with a local twistor index. Denote this
field by R®. (Since, at this stage, we are working in conformally flat space-time, the
bundle of local twistors is flat and so we can just evaluate such an object in a covariantly
constant frame and then transform to the standard ome.) Then R* is defined modulo
gauge transformations, R® — R* + DZ* where Z* is an arbitrary function with values
in local twistors and D denotes the exterior derivative extended to act on quantities with
a local twistor index using the local twistor connection. We also have the self-duality
equation (DR*)™ = 0 where the superscript ‘—’ on a 2-form denotes its ASD part. As a
consequence of the fact that R* is of the special form d8/0W,, DR* also has vanishing
primary part. This follows {rom tlie fact that the ‘field’ integral formula for the primary
part is the expression

*R
O 400 QLB
However, this is of the the form of the integral of df_,/07478d7g where f_; has Liomo-
geneity —1 (and has indices) but this is an exact form being proportional to d(7#”f_;) so
that its integral vanishes.
This last condition can be written Xo3 DR? = 0 where

, €ap 0
Xap = 2.2
g ( 5 0 ) (2:2)
is the ‘position twistor’ i.e. the canouical section (up to scale) of Tyg over Minkowski space
given by expressing points of Minkowski space as elements of the projectivisation of Tiag

via the Klein correspondence.
We have that the primary and secondary parts are the potentials for the helicity 3/2

field as follows | i
[0 g P p ' - —_ /)[) d‘l;
R T ( oA ) T ( O'Alb(l.'l,'b ) '

The equations (DR*)™ = 0 and X,z DR = 0 become
dp? 4+ ide™ N ag =0 and (dog)” = 0.

#Cdre.
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The first equation can be seen to umply the secoud by first taking the covariant exterior
derivative of the first (in flat space still) to obtain

dl‘AAI A dO’Af = O,

the form of the R-S equation given in the iutroduction, and then writing out this system
in full. The helicity 3/2 field is then the secondary part of DR,

Thus, locally at least, R* modulo DZ* satislying X,sDR* = 0 is equivalent to a
helicity 3/2 field and is the P-transform of dR/IW,.

This formulation of the potential for a helicity 3/2 field is sufficient to encode the full
charge of the field in the context of gauge {reedom of the second kind since we now have

the exact sequence :
0= T2 &= Q" Q% 5 ..

where the second map is the injection of the covariantly constant local twistors into general
local twistor fields, the third and fourth maps are the exterior derivative extended to act
on local twistors using the local twistor connection. Thus the gauge freedom of the second
kind is given precisely by constant twistors. (A sequence of this nature was given in Penrose
1994, but with a restricted gauge freedom.)

3 Generalization to curved space

The above equations do not work as they staud in curved space as, when D? # 0, the
equation XogDR? = 0 is no longer compatible with the gauge freedom. However, a
weaker equation is compatible with the gauge freedom in vacuum, namely

DX.5 A DR” = 0. (3.3)

There is a subtlety liere as X,z 1s ouly defined up to scale by the conformal metric. The
scale is fixed by clicosing a particular conformal factor and representing X, by equation
(2.2). Equivalently, a choice of conformal scale leads to an infinity twistor

0 0
[Q,ﬁ:(o EAIBI)

which can be used to normalize the position twistor by mcans of the relation
Xopl® = 2.

Equation (3.3) is only conformally invariant when X,z DR® vauislies also. This additional
equation can be consistent only in {lat space, however.

The compatibility of the gauge freedom with equation (3.3) follows ifl we have the
relation DX,z /\/Cf = { where Kg is the curvature of the local twistor connection and X5 is
normalized as above by a choice of conformal factor. This relation holds iff Vﬁ,lIJABCD =0
and thus requires the Einstein equations.  As belore, there are as many equations as



unknowns (in this case 16 rather than 8) but the gauge {reedom can be used to set some
(in this case 4) of the unknowus to zero leading to an overdetermined system. However,
if the relation DX, A K? = 0 lolds, the covariant exterior derivative of equation (3.3)
vanishes identically leading to four relations between the 16 equations so that they are not
overdetermined in vacuum (or more generally when the trace free part of the Ricci tensor
vanishes). (Conversely, if V4,V 4pcp # 0 the equations are inconsistent.)

If we write out this system in terms of the primary and secondary parts of R, we
obtain the equations

dz8 A dp? +idzE A de*M Aoy =0 and dz? Aog = 0.
In flat space we see that we acquire an extra helicity-3/2 field, since

JéCdIBB, A (ll'g/ )

DRa = ' 1
( 'QL‘A/BIC/(I.’ZJBB A diL‘g

with the ¥’s totally symmetric and Vﬁ:t/:ABc =0= Vﬁ'd)Alecl. Conversely given such
Y’s, we can write down the twistor indexed 2-form as above which is closed and so can be
written as DR* for some R* and autowatically satisfies DX,5 A DR* = 0.

However, the gauge freedom of the second kind is still just the constant local twistors,
since the fields sit in the same exact sequence as the single helicity 3/2 fields did as before.

4 Where do we go from here?

Connections with other aspects of twistor theory

There are some intriguing counections with other aspects of twistor theory. Iustly, the
connectious between twistor theory and integrable systems highlight the role played by
linear systems in twistor correspoudences and so oune might hope that the above linear
system might lead to sowne kind of twistor construction. See Mason (1994) for an explo-
ration of this line of reasoning. Sccondly, the identities that guarantee the consistency
of the R-S equations are precisely those that lead to the characterization of the vacuum
equations by means of the Sparling 3-form. This suggests that a (local) twistorial analogue
of the Sparling 3-form should be taken to be DZ* A DZP A DX,p. 1t is certainly closed
Ul the vacuum Bianchi identities are satisfied. Tlhis expression (with some modification
to eliminate the terms that contain the Ricel tensor explicitly) also has an interpretation
as a lHawmiltonian that gencrates a translation along the vector field 74 w4 together with
a spin-frame rotation gencrated by 7478 These ideas should extend to a local twistor
geueralization of the conuections between the Sparling 3-forin, the canonical formalism and
quasi-local mass described in Mason & Frauvendicner (1990).

Towards a definition of twistors in vacuum space-times

The aforementioned cousiderations serve to clarify the role of twistors aud their relationship
to the R-5 equations i flat space, by exhibiting them as gauge quantities of the second kind.



However, the full generalization of these ideas to Ricci-flat curved space remains elusive.
So far, these considerations suffer from being ‘too linear’) since a twistor space without
a vector space structure ought eventually to arise. One promising route to achieving
this would be to examine a role for twistors as providing a ‘charge’ in the active sense
rather than passive sense, similarly to the way in which the electric charge features in the
electromagnetic counection V, — 1eA,. Combining the active with the passive roles for a
twistor might provide a route to the required non-linearity. Work is in progress.

Thanks to J. Frauendiener and G.A.J.Sparling for comments and discussion.
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Another view at the spin (3/2) equation

Jorg Frauendiener

In this note [ want to draw attention to another point of view for the spin (3/2)
equations which have been discussed in various places because they might provide a
way of defining twistors for curved but Ricci flat spacetimes (see [4], [3], [2]). The
two main properties are that the consistency condition for the existence of solutions
are the vacuum equations G,, = 0 and that in flat space twistors emerge as the
charges of the fields.

Here I want to focus on the equation
8A(A'7§'t)3 =0 (1)

and show how it relates to the point of view in [3]. In particular, I will show how to
obtain “charges” in a consistent way also m curved spacetimes. Recent work with
George Sparling [1] shows that equation (1) has the following properties (among
others): it is consistent in arbitrary curved spacetimes, i.e., the Cauchy problem is
well posed; it 1s conformally invariant and can be obtained from the action

A= Illl {/‘/QIBIOA,A’@?} E

As 1t stands (1) is insensitive towards the vacuum equations because it has
solutions on arbitrary manifolds. Let me denote the solution space of (1) by [3/2]
and the solution spacc of the Weyl neutrino equation by [1/2]. Note, that the
Weyl equation also has a well posed Cauchy problemi on arbitrary mamifolds. In
flat space we have the following structure relating these solution spaces. Given any
solution of {1) we obtain a solution of the neutrino equation by taking its divergence:
OB vl € [1/2] for all y € [3/2]. Call this map N : [3/2] - [1/2]. On the other hand,
given v4 € [1/2] we can obtain a solution of (1) by taking a symmetrized derivative,
8&{‘,‘1/3) € [3/2] for all v € [1/2]. Call that map L : [1/2] - [3/2]. It is casy to see that
im L c ker N. So we get a sequence of maps

[1/2]- [3/2] -5 [1/2] (2)

which 1s not exact. In fact, from a crude argument, counting free functions for the
Cauchy problem, it can he seen that [3/2] is characterized by six free functions of
three variables whercas [1/2] amounts to two free functions. This shows that ker N
amounts to four functions so that there are two free functions-that do not correspond
to the image of L. This can be made more precise using the Fourler representation
of solutious of (1) in flat space.



If we now ask how much of this sequence can be carried over to curved manifolds
we find that the L-part can only be defined if the tracefree part of the Rical tensor
vanishes, i.e., only on spacetimes with $,, = 0 will the dervative of a neutrino field
be a solution of equation (1). Similarly, the divergence of a solution of equation (1)
will be a solution of the Weyl equation only if ¢,, = 0. If, in addition, we insist
on the property that im L ¢ ker N then also the scalar curvature has to vanish. In
summary then, we find that we have the same sequence (2) iff Gy, = 0.

At this stage, the natural question to be asked is, of course: why do the Einstein
equations favour this structure? Surprisingly, it is exactly this structure that is
necessary to define “charges” as surface integrals in the curved case. Recall, that
equation (1) arises from a variational principle. This means that its solution space
comes equipped with a natural symplectic structure. The symplectic form on [3/2]

15
w(n,12) = 1/“ (7{433'723' 75‘3817131) Zianr

The integral is taken over a hypersurface H. It is hypersurface independent because
the integrand is closed iff the «’s satisfy equation (1).

If we think of {1/2] as inducing transformations on [3/2] via v~ v + Lv, then
we may ask for the Hamiltonians that generate these transformations. This means
that we have to solve the equation

w(Llv,y) = -6H,(v) for all v € [3/2] (3)

for H,, given v € [1/2]. Now the left hand side is
Im/@“}uB)fyg'H'EAA,
which 1s equal to (up to factors)
Im/ DvB A58 8 S 0p,

2 arp being the selfdual two-forms ou"spacetime and D being the covariant exterior
derivative. Integrating by parts we find that the left hand side of (3) is

w(Lv,vy) = Im/ vBAR BT pge — Im/ VB DAAB AL e,
OH H

consisting of a hypersurface integral and a two dimensional boundary integral. Ex-
amination of the hypersurface integrand shows that it is equal to (UAOB 74 B'EAA:)

This shows that this integral will vanish iff we restrict ourselves to the subspdce of
[3/2] consisting of divergence free solutions of (1). The Eiustein equations ensure
that [1/2] acts on ker N. The upshot of all this is that provided the Einstein equa-
tions hold, we have an action of {1/2] on the symplectic submanifold ker N which
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can be considered as gauge transformations. The corresponding Hamuiltonians or
“chiarges” are given by the surface mtegral

HU(’Y) = Illl/ I/B’_YE}’B(ZA1317
oH

where now v is restricted to be a divergence free solution of (1), i.e., a solution of
the equation 044742 = 0.

Let us now see how this fits in with the flat space expression for the charges in
[3]:

a= [ nbpmcn
N

where Y ypicr = Gpp¥p o is the helicity (3/2)-field defined by ¥ and pA’ is the

primary part of a dual twistor (p?',\4), so O4au? = ie4B' Ay and Faarp = 0.
Consider now the complex one-form o = Y4 g 412’044, Then

dOl = 831 (;}’A/C/Ap,lcl) EAB + 8§, (’?AaclA/JLCI) EA'B'
= (81/3":7/1’0%) /LLC’ZAB + 5’,4/01/1 (aélucl) EAB
+ (0 Awcra) BE AP+ Gacua (04 ) TP
The first two terms vanish because of (1) and the twistor equation and so
do = wA’B’C’/J‘CIEAIB/ + Z’,?AIBIA/\AEA’Bt .

Integration over K shows that the flat space expression and the symplectic expres-

sion for the charges agree up to signs and taking the imaginary part if we identify
vA and \A.

All this looks cncouraging but there are still many open questions. Why do
we get only an imaginary part m the symplectic charge mtegral? How do twistors
appear in the curved space formula? What is the role of the solution v/ of the Weyl
equation in relation to the projection part of a dual twistor? Maybe sonie of these
questions can be answered once the role of the second potential has been clarified.
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A higher spin generalization of the Dirac equation
to arbitrary curved manifolds

Jorg Frauendiener

In this note I want to discuss a class of equations that can be considered as
generalizations of the Dirac equation to higher spin fields. There have already been
several proposals to this end (see [2] and references therein). The present approach
grew out of joint work with George Sparling on higher spin massless spinor fields. In
[1] we considered spinor fields of the type ¥48-& with p primed and p+ 1 unprimed
mndices subject to the equation

Daapl S =0. (1)

For p = 0 this is just the Weyl equation for a neutrino.

We were able to show that this equation has the following properties:
o There exists a variational principle which yields (1).
e The equation i1s conformally invariant.
o In flat space the solutions to (1) satisfy the equation (3’*'+) = 0. This equation is
the key to the theory of these massless fields and althougl it is not strictly hyperbolic
(only if p = 0) one can still give existence and uniqueness proofs.
e The Cauchy problem for (1) 1s well posed: given initial data on a spacelike hy-
persurface S, then there exists a strip N = S x [-7,T] on which (1) has a unique
solution with the specified initial values.
o There exists an equivalent exact set for equation (1), i.e., the characteristic initial
value problem is formally well posed.
o The system coupled to gravity via G, = 87T, forms an exact set as well.
e The general solution i flat space is characterized by a totally symmetric dual
twistor ¢a,..q,(ka, ka) defined on the future null cone of the origin of Minkowski
space. There is some gauge freedom left: let I, be the operator pair (ka,0/0k,.),
then @o,. o, + (0,7, o,) defines the same solution as ¢a,. .a, -
e More m the spirit of the twistor programme we have the result that analytic
solutions of (1) are described by the sheaf cohomology group HY(U,O(p,p)) for
suitable domains m twistor space. O(p,p) is the sheaf of germs of rank p totally
symmetric covariant tensors on projective twistor space taking values in O(p).

Using the same type of spinor fields one can write down a system of equations
which extend the Dirac equation and which have several of the above properties:

AB.C __ H
A"/) el 1)+1/\/l’B’ !

(2)

A'BC M B.C
8A'(A\B )y T Ty 1rABC
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The first thing to note 1s, of course, that for p = 0 this 1s just the Dirac equation in
two-component spinor notation. As in that case, we have as many complex equations
as we have unknown complex functions, namely 2(p + 1)(p + 2). Next, it is casy
to see that therc are no constraints to be satisfied on an initial spacelike surface.
If we decompose the covariant derivative operator mto a timelike part D and a
spacelike part Dap = Dga with respect to a unit tunelike covector field t 44/, 040 =
taaD + t8 D,ap, then none of the equations is purely spatial. lLe., all equations
contaiu the tunelike derivative D.

In order to analyze the situation further [ want to introduce the homogeneous (in
7A, A" functions ¢ = Y5 cp cmATB . 7CxB' | 7¢" and x defined in a similar
way. Also we define the derivative operators L = nAn4 04, M = 1404044, M' =
A7 Dy 4 and N = 049494 4. Then it is easy to see that the system (2) can be

written as
M'p = -pux,
My =—py.

The derivative operators obey certain commutation relations involving the curvature
of spacetime and the wave operator. In flat space these relations are trivial apart from
[L,N]¢ = -Hp+p'+2)0¢, [M,M') ¢ = - 1(p-p')0¢ and the relation LNp- M M'$ =
sp(p' +1)0¢ for a function ¢ with homogeneities (p, p’).

(3)

Using this formalism it 1s quite easy to derive the following curious result for the
flat case, which is the analogue to the “key equation” in the massless case mentioned
above.

Theorem: If (1, x) 1s a p-solution, i.e., functions with resp. homogeneities (p+1, p)
and (p,p+1) satisfying the system (3) then they also satisfy the equation (m? = 2u?):

(D+”L2)(D+%>'”(D+(T;’:T)2>¢:O’ (4)

Proof: The proof 1s by induction on p. For p = 0 we have the Dirac system and so we
obtain (O +m?2)y = (A4 m?)y = 0. Suppose the clain is true for p-solutions and let
(1, x) be a (p+1)-solution. Then (N, Nx)is a p-solution because N conunutes with
M and M'. Therefore, defining P = [T0_, (0 +m?/(j + 1)?), we have P(Ny) = 0.
Since L commutes with O and usiug the relation above we also have 0 = P(LNy) =
P(MM' + §(p+2)?0)yp. Using (3) we finally obtain [TP2 (O +m?/(j + 1)*) ¢ = 0.

The same argument applies to v and so the proof is complete.

So the fields (3, x) represent some kind of “mass multiplet”. In the curved case
the right hand side is no longer zero but contains (derivatives of ) the curvature and
lower order derivatives of the fields. Just like in the massless case, the differential
operator on the left hand side 1s not strictly hyperbolic. It is, however, the product
of strictly hyperbolic operators. This property enables us to use the existence theory
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of Leray and Ohya [3] to prove local existence and uniqueness of solutions to the
Cauchy problem for this system (the details will be given elsewhere).

In the same way as in [1] we can also prove that there exists an equivalent exact
set for the system (2) and thus we arrive at the statement that the characteristic
initial value problem is formally well posed. The null data to be prescribed consist
of the following fields

{M‘~J‘NJ‘¢, M"INIy:0<l<p,0<j< 1}

which makes (p + 1)(p + 2) freely specifyable functions. This is in agreement with
the observation that the number of characteristic data is half the number of Cauchy
data. In order to make the same statement for the system coupled to gravity, we
need to define an energy momentum tensor for (2). But this is easily done, once we
have established a variational principle. Consider then the four-form

£ = I {4 % DaeavhPS - X8 % OauniP S + () AP ST

where ¥ is the volume form of spacetime. Then we define the action Ay, ¥, x, X, 0% =
fuyr £- The dependence on a tetrad (or more appropriately the canonical one-form
of the bundle of orthonormal frames) 6 is mmplicit in ¥ and via the torsion free
condition also in the connection. Varying A with respect to ¥ and y yields the
system (2), variation with respect to ¥ and x gives the complex conjugate system
and the variation with respect to 8¢ coutains the energy momentum tensor. This is
explained in more detail in [1].

Using the Einstemn equation G, = 877, we can cousider the tracefree part of
the Rical tensor ¢, and the scalar curvature A as expressed in terms of the fields
P, x and their first derivatives. Then adding the Bianchi identity

) _oB
0¥ apcp = 9 %cpyap

to the system, we can prove the existence of an equivalent exact set for tlie coupled
system using the same type of recursive argument as in [1]. This will also be given
in detail elsewhere.

The system (2) 1s another example of a system that is not symnetric hyperbolic
but still gives rise to an exact sct.

Finally, I want to briefly discuss the structure of the solution space of the system
(3) in the flat case. This, however, should be considered only as a presentation of
preliminary results. Let me denote by [p] the space of p-solutions of (3). Given a
p-solution we cau construct a (p + 1)-solution by taking a symmetrized derivative,
i.e., by applying the operator L. Thus L{p ~ 1] ¢ [p]. On the other hand, taking
the divergence of a p-solution by applying N results in a (p — 1)-solution and so
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Nip] c [p-1]. Let (¢,x) be a p-solution and consider the identity LNy ~ M M) =
s(p+ 1)y, Using (3) we get LN = L(p+ 1)2 (O +m?/(p+1)?) ¥ and so we find
that the operator (O +m?/(p+ 1)?) wmaps a p-solution into the nnage of L.

The following picture thercfore emerges: i [p] there exists a distinguished class
of solutions, the unage of [p ~ 1] under the map L. These are considered as “unim-
portant” or gauge and we consider each p-solution as beiuT defined only up to an

element of L{p - 1]. This leads to the factor space F, = [p] Lip- 1] Since O com-
wutes with L it maps Llp — 1] into itself and is therefore a well defined operator
on Fy, and we can define the Klemn-Gordon operator O + 5%2175 on Fy. Due to the
calculation above this operator vanishes identically on £,. So we are led to consider
the elements of the factor space F}, as the higher spm analogues of the Dirac wave
functions. They do fit nto this picture because they are in the trivial factor space
oy -
{0} |

Although there exist solutions to the system (2) on arbitrary curved manifolds,
it remains to be seen how much of this factor space structure can be carried over to

curved manifolds. Work on this 1s still in progress.
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Twistors and the Einstein Equations

by Roger Penrose
Mathematical Institute
Oxford, OX1 3LB, U.K.

Abstract It has been proposed that the appropriate global definition
of a twistor, applicable to general curved vacuum space-times, would
be as a charge for a massless field of helicity 3/,. In flat space-time,
using the Dirac form of these potentials, these twistor charges arise as
the “gauge freedom of the second kind” in a long exact sequence
involving the first and second potentials for the field.

A construction due to Ward is recalled, in which potentials for
massless fields can act as partial connections on non-linear bundles,
integrable on f-planes. This is generalized, in the case of helicity 3/7,
to provide a full connection on a vector bundle of rank 3, leading to an
expression whereby the wusual Rarita-Schwinger potential is
supplemented by a second potential.

to appear in Proceedings of the 1993 Twistor Counference, Devon.
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NEW MASSLESS FREE FIELDS IN OLD
SPACETIMES

Roger Floyd
Mathematical Institute, 24-29 St Giles
Oxford, OX1 3LB

Abstract

A kind of massless free field, a “symmetric recurrent” spinor field is defined. The
principal spinors of such a field define shear-free ray congruences. A vacuum solution
of Einstein’s equations is type {2,2},{4} or conformally flat iff its Weyl spinor is
symmetric recurrent. The massless free fields of the Robinson-Sommers theorem
are symmetric recurrent. A spacetime with a certain kind of symmetric recurrent
spinor admits a Killing spinor. A massless free field associated with a Killing spinor
1s symmetric recurrent. Symmetric recurrent fields are constructed for spacetimes
with certain types of Killing spinor, essentially one per Killing spinor.

to appear in ‘Classical and Quantum Gravity’.
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On the X-ray, Radon and Penrose transforms

It has long been known that there is a close link between the Penrose transform and the
X-ray transform and, furthermore, that the twistor correspondence for Minkowski space
M of signature (2,2) is the background geometry associated to the Radon transform in
3-dimensions. In the last issue of TN, I showed how the Radon transform could be under-
stood as the standard Penrose transform globalized so that the (2,2) signature Minkowski
space is double covered and twistor space is the non-Hausdorff space obtained by gluing
together two copies of CP?® together over some small thickeing of RIP3. In this note I show
how to write the various Radon transform formulae (and their inverses) in an invariant way
that motivates some generalizations and brings out the projective invariances of the corre-
spondence. ' ' ' '

The Radon transform is a transform from functions f on RP* to functions g on RP™*,
the space of hyperplanes in RP*. Let Z* be homogeneous coordinates on RP* and W,
homogeneous coordinates on the dual space RP"*. The function g at a point [W] € RP™" is
obtained by integrating f over the corresponding plane W - Z = 0 in RP"®. More generally
one can transform from functions f on RP" to functions g on Gr(k,n) the Grassmanian of
projective k-planes in RIP*® by integration of f over each projective k-plane. This can be
reduced to the former type of Radon transform by restricting the correspondence to some
RP*! in RP" and its dual RP¥*!* in Gr(k, n). Ordinarily this correpondence is treated
affine linearly (i.e. the points at infinity are thrown away) and the ordinary Euclidean
measure on R™ is used. However, it is clear that the transform is projectively invariant.

In order to be able to integrate these functions invariantly we must introduce some line
bundles: RP" has two families of line bundles on it, O(p) and O(p). Let Z* be homogeneous
coordinates on RP?, then sections f of O(p) and O(p) are homogeneous functions of weight
p, f(aZ) = a? f(Z) for a € R*, but sections of O(p) satisly f(—Z) = (—1)?f(Z) whereas
sections of O(p) satisfy f(—Z) = (—1)P"! f(Z). Clearly, on restriction to a projective linear
subspace, these line bundles become the corresponding bundles for that subspace.

The bundle of densities (i.e. quantities that can be integrated) on RP" is O(—n — 1)
in odd dimensions, and O(—n — 1) in even dimensions. One can think of integration
in the non-orientable even-dimensional case as being performed by taking the section f
of O(~n — 1), multiplying it by e4p..s2%dZ°x .. A dZ°, (Where €4ga, = Efag-an IS the
volume element on R**') and then pulling back to the sphere S®™ — RP™ and integrating
on the sphere and then finally dividing the result by 2 to take account of the double cover.
If we had used instead a section of O{(—n — 1) we would have automatically obtained zero.

Since one is integrating over codimension one projective hyperplanes, the integrand has
to be a density for the hyperplanes. The standard Radon transform in even dimensions is
therefore a map

R : D(RP", O(—n)) — [(RP™, O(-1))

and in odd dimensions

R : [(RP*, O(—n)) — I'(RP*, O(~1)).

1
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To see this invariantly, let W, be homogeneous coordinates on RP™*, then on restriction
to Z - W =0, we have:

Eapy-62PA2 6+ A dZ8 |z weg = Wov

for some (n — 1)-form v of weight n in Z and —1 in W. This follows from € identities and
WﬁZ(ﬂdZ”’,\ N dZ‘SllZ.W:O = 0 which in turn follows from W -Z =0 and W -dZ =0 on
W.Z=0.

Let f € I'(RP*, O(—n)) for n even or f € I'(RP",O(—n)) for n odd and then define
Rf(W) by:

WaRf(W) = /;-Wzo f€a57-..szﬁdZ7A N VA

It is clear that Rf must have homogeneity —1 since the left hand side of the equation
must have overall homogeneity zero. That it is a section of O(—1) rather than O(—1)
follows from the fact that a choice of orientation for the plane Z - W = 0 needs to be
made in order to integrate. Such a choice can be made by a choice of W, € 5™ covering
(W] in RP" since that provides a normal direction to the plane W - Z = 0 in R**! and
hence to its intersection with S™ on which we can perform the integration (as mentioned
above). Clearly the sign of the integral reverses if the sign of W and hence the orientation
is reversed. This means that R f does not reverse its sign under W — —W as required for
a section of O(~1).

Generalizations

One can write down generalizations in a similar spirit to the formulae for the Penrose trans-
form for different helicities. For f € I'(RP*, O(—s—n)), neven, or f € I'(RP*, O(—s—n)),
n odd, and s > 0, we have that there exists g such that:

Wg,0% - 0% g(W) = / 272 . 7% f(Z)epyp,p, AP dZP2 - - dZPr
Z-W=0
where g € I'(RP™, O(s — 1)). For s < 0 we have:

WeWa, - - WQ;,|9(W) = /

ZW=0 80‘8"2 o a"lalf(Z)gﬂoﬂr--ﬁnZﬁleﬂzA A dzP»

where again g € F(]RIP’"‘,@\(S — 1)). To see that such a g exists, in both formulae it 1s
sufficient to prove it in the s = 1 case since we can reduce the general case to this using
the symmetry of the integrand over the oy - - - a, indices and by contracting the s —1 other
free indices off with constants A,, etc.. In the second formula it suffices to show that
the integral vanishes when the fy and «; indices are skewed since the right hand side is
manifestly proportional to Wps,. This follows by expressing the integrand skewed over [,
and a; as an exact form d{(feq,p8,-8._, 27 dZP? - - - A dZP"-1) 50 that the integral vanishes.
For the first formula we must show that 81%¢% = 0 where ¢ is defined by:

Wagal(w) = ,/Z.W=0 Zalf(Z)Eaﬁ“/'“&ZﬁdZy/\ A d‘26

2
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We use the fact that the integral of the Lie derivative of the integrand along Z#8, is W, 8
acting on the integral (this follows from SZL{n,R) equivariance of the integral). Again one
can show, with some manipulation, that W,W30(7¢®l is given by the integral of an exact
(indexed) form.

It is perhaps worth noting that the g in the first formula is unique as the kernel of the
operator 8% - -- &7 consists of polynomials, but one cannot construct sections of O(r) out
of polynomials as their sign does not change appropriately under inversion. The second
formula, however, will have kernel consisting of homogeneous polynomials of degree —s—n.

The inversion formulae and further generalizations

The difference between the Radon transform in odd and even dimensions is perhaps most
manifest in the inversion formulae. In odd dimensions, the Radon transform and the
above generalizations takes one from I'(O(—n —s)) to I'(O(s—1)). This is inverted up to a
constant overall factor by the above generalized transform with s replaced by 1 —n—s. This
clearly cannot work in even dimensions as the image of the Radon transform are sections
of O(s — 1) which cannot be integrated over hyperplanes even after the homogeneity has
been raised or lowered by differentiation etc..
In even dimensions the inversion formula is, in formal terms,

IW)  popiba
f(Z) = / (_Z TWTS+£'€ﬂ s WgadWg, -7 dWp,

where g € I'(RP™, O(s—1)), f € N(RP*, O(—s—n)). This is a singular integral and needs
to be regularized'. The fact that it is possible to regularize it invariantly follows from the
existence of the forward transform. When s < —n the formula must be understood by its
{1 — s — n)’th derivative with respect to Z* or alternatively with an additional factor of
log(Z - W) in the integrand and and a polynomial ambiguity in the result for f.

This formula completes the story for scalar weighted functions in even dimensions.
However, in odd dimensions it leads to a new transform

R : D(RP™, O(s — 1)) — I(RP", O(—s — n))

given by the above formula except with g € I'(RP™, O(s— 1)) as is required for integration
in odd dimensions and f € I'(RP*, O(—~s — n)). One expects that it is nontrivial and is
inverted by the same formula with s replaced by 1 — s — n. The same comments as above
concerning ambiguities will apply for s < —n.

'In order to have a rigourously invariant formulation one must demonstrate that this regularization
can be performed invariantly. In recent work with T.N.Bailey it has been possible to prove this directly
although an invariant proof of the inversion property is still lacking
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Connections with twistor theory

In my article in the last TN, I showed how the X-ray transform could be understood as a
globalization of the standard Penrose transform. The novelty of the above in this context
i1s that it shows that one can obtain an inverse Penrose transform by choosing a plane
in twistor space and using the above inversion formula on the corresponding (-plane in
space-time. Fritz-John avoids the awkwardness of choosing a (-plane by integrating over
all possible choices.

The second example is the twistor transform for Minkowski space of signature (2,2)
from cohomology classes on twistor space to dual twistor space. The cohomology has to
be that of the sheaf O(n) and hence the corresponding functions on RIP® are sections of
O(n) rather than O(n) thus the version of the transform thats relevant. Thus the twistor
transform in this case will be implemented by the non-local formula of the last section.

Thauoks to T.N.Bailey and G.A.J.Sparling for discussions. :
Z - ’rz"-w\
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ABSTRACT OF D.Phil THESIS by F.Miiller

The ladder representations Hy, Hi (kK € Z) of SU(2,2) which via the Penrose
transform correspoud to free massless fields of lelicity Fkh/2 have analogues for
all SU(p, q) . We extend the formalism of twistor diagrams accordingly and construct
projection operators from tensor products of such representations into irreducible
subspaces by means of these generalised twistor diagrams. We first consider the case
p = q = 1 where Hy (H;) exhaust all discrete series representations with lowest (high-
est) weight. We formulate projection operators on Hi ®H, in algebraic, diagrammatic
and analytic ways and obtain formulae to translate between these various guises. For
realisations of H; on spaces of sections we then establish an equivalence of diagram
composition with the algebraic composition of operators which is expected to carry
over to realisations on higher cohomology groups. We achieve this by explicit con-
struction of a contour of integration on which a power series expansion of the linking
segments is possible. We use this equivalence to prove that, as a representation of
SU(1,1), any finite tensor product ®, Hjc; can be decomposed by compositions of
‘box diagrams’. These constructions are shown to carry over to SU(p, ¢) and 1t is indi-
cated, by meauns of examples, how they might be conplemented to form complete sets
ol projections in the general case. This requires some explicit decomposition formulae
which we give in a restricted case for SU(2,1). For the decomposition of Hiy @ H, the
SU(1, 1) projections are almost sullicient and we extend them to a complete set for
SU{p, ¢) . The translation of algebraic expressions for projections back into diagrams
1s i general found to be a simplification.

We then use our techniques to formulate a number of conformally invariant first
order scattering amplitudes in terins of projections on tensor products of ladder repre-
sentations and make a few remarks on extensions to conformally non~invariant cases.
Apart from giviug invariant descriptions of such amplitudes.the use of orthogonal

states and diagrams in higher dimensions also simplifies the calculational aspects of
diagram integration. _

submitted in January 1994.
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Update on the massive propagator in twistor diagrams

Here follows a sketch of recent developments regarding mass, following on
from the ideas described in TN 32 for a possible solution to the problem of
describing the massive Feynman propagator in terms of standard twistor
diagram elements. The general idea there was to make finite sense of each
term in the formal expression:

Orwt) s S ) O

o

by using the Barnes integral representation of the Feynman propagator
function as evaluated on suitable test-fields, and then to find twistor
integrals corresponding to each such term. The key new idea was to exploit
the {@_rkoperties of the inhomogeneous bHoundary at infinity, i.e. a boundary
on XZ=mor WY = m, rather than use the poles ( X2-m ), (E’ -m)!
which had featured in my 1985 paper. This gets us from the “on-sheil”
amplitudes, ie. Hankel functions satisfying the Klein-Gordon equation, to
the more grown-up propagator “off-shell” functions. This is a particularly
satisfactory idea because since 1985 it has become clear that boundaries of
this kind are essential elements of the diagram formalism.

AV N |

-n—\
The scheme I indicated in TN32 was that (]

should correspond to the twistor integral
N

/\ . ~-Nn-l
W 4 Mmeans: (w\l)

SN PONT R 20 I bovw\lb\fa oA W‘_j =

and 1 checked that the terms for n=0, n=1, were correct. One needs to
choose k = exp (- ¥ ), where ¥ is Euler's constant, if the mass parameter
entering into the boundary specification is 1o be the same as that occurring
in the formal power series (though this is not essential.) It seems
something of a miracle that the n=1 term can be made to agree by a
suitable contour choice: this is not something that follows just from its
satisfaction of a differential relation.

Recently Stephen Spence has checked my calculations, and gone on to
consider the case of n=2. He finds in that case the correct terms plus an

unwanted extra term which is a multiple of kym‘

The same feature occurred in my earlier (1985) work. That is, [ worked out

AN o
WY
v _n
weoed -N R
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and found terms of this kind arising which prevented the correct Hankel
function being formed. Indeed by considering the operation %
WA

which turns the boundary into a pole, one can see that these unwanted
terms must acise in the new context.

In the 1985 work I found a way of getting rid of these terms, but at the
cost of changing the diagram formalism. In those days it was not so clear
how the inhomogeneous elements ought to be defined, and it seemed all
right to abandon the natural "boundary” definition for a logarithmic
expression. What I found can be expressed like this: we could get the right
Hankel function if the (—n)-line were to be re-defined as

(w.z —¢)"" w2—§ DL )
PURY k’(’f)"\d"’?"

Now this expression is crying out for the limit € — o to be taken, and
indeed it's only in the € =0 limit that we get exactly the right answer.
Unfortunately the contours disappear at that limit!

It is fairly clear that the same thing could be applied in the new context.
That is, if we were to use these logarithmic expressions, now attached to
the inhomogeneous boundary, we should lose the unwanted terms and
regain just the Feynman propagator function.

But what are we to make of these logarithmic factors, and of the contour
that disappears in the limit? This has required a sequence of new ideas.

1. A contour re-emerges if we add another boundary line, ie take the
combination

) 2 )
§ S imt) s T
w22k )

.2
2. Observe that w-,:‘,,.:;—_}_____—;o__ii—-—z = bg(‘”—z)

This suggests that the logarithmic factors can be supplied as required by
taking o A P _n >

This is not quite the case, as in fact this is Ator
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However, these extra terms don't affect the subsequent integration and so
it seems that

—v N -
gives the Feynman propagator function. The expression for we—e=—=0—2

w-2 Xa-y 7(3 7(2
looks appalling but it can be rewritten as h(,\ .J dxay j Ay ax,
- A ——
x
W.2 A ke k kT
—_ j (W.2—x) dx
le A ¢

and it's defined entirely by the two features: ‘
l‘ A—‘ -\
%LEW""“““‘M __’L—o—""«z,} = W ?w——ff‘EEO'”Z}

w "= 2 =0 whea W. 27K

These two properties ensure that 0 "’fr/\\/\/:v;:’v"/h 2 = W\éﬂf
2% W e -~

aand it follows from this that@) solves the inhomogeneous Klein-Gordon
equation.

3. These observations succeed in giving us a scheme in which only
standard diagram elements play a role. However a further development
gets us much closer to a more fundamental picture in which the nth twistor
diagram corresponds to the picture of n successive interactions with the

constant Higgs field. PN
° o -1 -1
To do this note that
Q Q =
\ !
2
] - =\

as one can see by an integration-by-parts argument. This might suggest
that
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but in fact the requisite contours do not seem to exist for this. Instead, one
must again add in further boundary lines. I have got as far as showing that

t

A wz (=2~ 1)
QC'J x2) 2 EY-* (Lﬁ(,\%) _ ‘)K

by a method that should extend to the nth case. The upshot of this idea
would be that each term in the series is represented by a diagram like

[eACI». /\ ¢S now

— an~ evelaation 63 hwe WMJ }-miJ

which could then be modified to take correct account of the spin-projection
which has so far been neglected, and to adapt to the case of spins other
than zero.

It is encouraging that these contour-integral techniques are similar to those
used by me and Lewis O'Donald in earlier work on ultra-violet divergences
(his article in TN32, and his thesis). This suggests to me that the problem
of representing general Feynman diagrams will be solved by exploiting
these same ideas.

Proc. Roy. Soc. A397, 375-396 (1985)
StT S,{fl(c«, Q“A(A‘m;,\\g A crertahon ("‘4+ /’}’Y\/JW MJ’O
(.ﬂ whenn many twonks ! )
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