Reduced Hypersurface Twistor Spaces — M. Dunn.

In Woodhouse & Mason (1988) twistor space **PT** was factored out by the Killing vector symmetries ∂_t and ∂_θ to obtain a reduced twistor space R with non-Hausdorff structure as shown in Figure 1.

In this article it will be shown that for a curved vacuum space-time M which is cylindrically symmetric (i.e. has spacelike Killing vectors ∂_z and ∂_θ), its hypersurface twistor space can be reduced by those symmetries to give a reduced hypersurface twistor space $\mathcal R$ whose structure is identical to that of R. It will also be shown how the initial data of the metric on the hypersurface can be encoded into this structure.

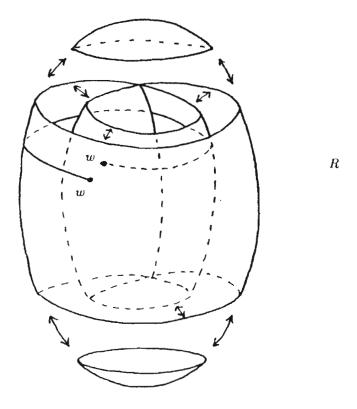


Figure 1

The metric of a cylindrically symmetric space-time can be written in Weyl's canonical coordinates:

$$ds^2 = \Omega^2 (dt^2 - dr^2) - f(dz + \omega d\theta)^2 - \frac{r^2}{f} d\theta^2,$$
 (1)

where Ω , f and ω are functions of t, r only (see Kramer *et al.* (1980)). The vacuum field equations $R_{ab} = 0$ imply that there exists a potential ψ such that

$$\psi_t = \frac{f^2}{r} \omega_r, \quad \psi_r = \frac{f^2}{r} \omega_t. \tag{2}$$

Defining the Ernst potential $\mathcal{E} = f + i\psi$, the field equations take the form

$$\mathcal{E}_{rr} + \frac{1}{r}\mathcal{E}_r - \mathcal{E}_{tt} = \frac{2}{\mathcal{E} + \overline{\mathcal{E}}}(\mathcal{E}_r^2 - \mathcal{E}_t^2); \tag{3a}$$

$$k_{r} = \frac{r}{(\mathcal{E}+\overline{\mathcal{E}})^{2}} (\mathcal{E}_{r}\overline{\mathcal{E}}_{r} + \mathcal{E}_{t}\overline{\mathcal{E}}_{t}),$$

$$k_{t} = \frac{r}{(\mathcal{E}+\overline{\mathcal{E}})^{2}} (\mathcal{E}_{r}\overline{\mathcal{E}}_{t} + \overline{\mathcal{E}}_{r}\mathcal{E}_{t}).$$
(3b)

The equation (3a), the evolution equation, is the integrability condition for equations (3b), the constraint equations, so all the information of the spacetime is contained in \mathcal{E} . The values of \mathcal{E} and \mathcal{E}_t on a spacelike hypersurface \mathcal{H} constitute the initial data for the space-time.

Recall that hypersurface twistors (strictly speaking, dual hypersurface twistors, which I am using for convenience of notation, avoiding a lot of primes!) correspond to curves in the complex "thickening" of \mathcal{H} , $C\mathcal{H}$, called β -curves. These are the analogue of β -planes in flat space, which do not in general exist in curved space-times, since the curvature causes integrability problems. However, the restriction of the β -plane distribution (the vector fields spanned by $\{\eta^A \nabla_{AA'}\}\$) to $C\mathcal{H}$ is just a single vector field

$$\mathbf{V}_{\mathbf{C}\mathcal{H}} = \eta^A N^{BA'} \eta_B \nabla_{AA'},\tag{4}$$

where N^a is a normal vector field to \mathcal{H} . The integral curves of $\mathbf{V}_{C\mathcal{H}}$ are the

The spinor η^A is parallelly propagated along the β -curve, which tells us that the lift of V_{CH} to the spin bundle S^A is

$$\mathbf{V}_{S^{\mathbf{A}}} = \eta^{\mathbf{A}} N^{\mathbf{D}\mathbf{A}'} \eta_{\mathbf{D}} \left(\nabla_{\mathbf{A}\mathbf{A}'} - \gamma_{\mathbf{A}\mathbf{A}'\mathbf{B}}{}^{\mathbf{C}} \eta^{\mathbf{B}} \frac{\partial}{\partial \eta^{\mathbf{C}}} \right), \tag{5}$$

where $\gamma_{\mathbf{A}\mathbf{A}'\mathbf{B}}{}^{\mathbf{C}}$ are the *spin-coefficients* (see Penrose & Rindler (1984)). We next factor out by the Euler vector field $\Upsilon = \eta^{\mathbf{A}} \partial/\partial \eta^{\mathbf{A}}$ to obtain a vector field $\mathbf{V}_{\mathbf{P}S^A}$ on the projective spin bundle.

Hypersurface twistor space $P\mathcal{T}^*$ is the space of β -curves, i.e. the quotient of PS^A by V_{PS^A} . We factor out this space by the symmetries induced by ∂_z and ∂_{θ} to obtain \mathcal{R} .

Alternatively, we could first reduce PS^A by the symmetries to obtain a space \mathcal{F} (and an associated vector field $\mathbf{V}_{\mathcal{F}}$, tangent to the β -curves on \mathcal{F}), and then take the quotient by $V_{\mathcal{F}}$ to get \mathcal{R} . This route will give us the structure of \mathcal{R} .

The natural null tetrad to use for a cylindrically symmetric space-time is:

$$D = \frac{1}{\sqrt{2\Omega}} (\partial_t + \partial_r), \qquad D' = \frac{1}{\sqrt{2\Omega}} (\partial_t - \partial_r),$$

$$\delta = \lambda \left(\left(\frac{r}{f} + i\omega \right) \partial_z - i\partial_\theta \right), \quad \delta' = \lambda \left(\left(\frac{r}{f} - i\omega \right) \partial_z + i\partial_\theta \right),$$
(6)

where $\lambda = r^{-1}\sqrt{f/2}$. We take our hypersurface to be one of constant time, so that the normal vector field to \mathcal{H} is $N^a = o^A o^{A'} + \iota^A \iota^{A'}$. The tangent vector field to the β -curves on $C\mathcal{H}$ is

$$\mathbf{V}_{\mathbf{C}\mathcal{H}} = -uvD - v^2\delta' + u^2\delta + uvD',\tag{7}$$

where $u = \eta^0$, $v = \eta^1$. The only non-zero spin-coefficients are

$$\varepsilon = -\gamma' = \frac{1}{2\Omega}D\Omega + \frac{if}{4r}D\omega,$$

$$\varepsilon' = -\gamma = \frac{1}{2\Omega}D'\Omega - \frac{if}{4r}D'\omega,$$

$$\rho = -\frac{1}{2r}Dr,$$

$$\rho' = -\frac{1}{2r}D'r,$$

$$\sigma = \frac{f}{2r}D\left(\frac{r}{f} + i\omega\right),$$

$$\sigma' = \frac{f}{2r}D'\left(\frac{r}{f} - i\omega\right),$$
(8)

where $\varepsilon = \gamma_{00'0}^{0}$, etc., as in Penrose & Rindler (1984).

This gives us the tangent vector field to the β -curves on $\mathcal F$ as:

$$\mathbf{V}_{\mathcal{F}} = -2\partial_r + \sqrt{2\Omega} \left(\sigma' \zeta^3 - 2(\varepsilon + \varepsilon') \zeta + \sigma \zeta^{-1} \right) \partial_{\zeta}$$

$$= \frac{\mathrm{d}r}{\mathrm{d}s} \partial_r + \frac{\mathrm{d}\zeta}{\mathrm{d}s} \partial_{\zeta}, \qquad (9)$$

where s is a parameter along the β -curves and $\zeta = v/u$. The equation of the β -curves on \mathcal{F} is therefore

$$\frac{\mathrm{d}}{\mathrm{d}r}(\zeta^2) = f_2 \zeta^4 + f_1 \zeta^2 + f_0, \tag{10}$$

where

$$f_{0} = \frac{1}{\mathcal{E} + \overline{\mathcal{E}}} \overline{\mathcal{E}}_{t} + \left(\frac{1}{\mathcal{E} + \overline{\mathcal{E}}} \overline{\mathcal{E}}_{r} - \frac{1}{2r} \right),$$

$$f_{1} = \frac{2r}{(\mathcal{E} + \overline{\mathcal{E}})^{2}} \left(\mathcal{E}_{r} \overline{\mathcal{E}}_{t} + \overline{\mathcal{E}}_{r} \mathcal{E}_{t} \right) - \frac{2}{\mathcal{E} + \overline{\mathcal{E}}} \overline{\mathcal{E}}_{t},$$

$$f_{2} = \frac{1}{\mathcal{E} + \overline{\mathcal{E}}} \overline{\mathcal{E}}_{t} - \left(\frac{1}{\mathcal{E} + \overline{\mathcal{E}}} \overline{\mathcal{E}}_{r} - \frac{1}{2r} \right),$$

$$(11)$$

and where the constraint equations (3b) were used to obtain f_1 in terms of the initial data.

Equation (10) is a Riccati equation, with solutions of the form

$$\zeta^2 = -\frac{1}{f_2} \left(\frac{g_1' + wg_2'}{g_1 + wg_2} \right), \tag{12}$$

where w is a constant and g_1, g_2 are linearly independent solutions of

$$g'' - \left(\frac{f_2'}{f_2} + f_1\right)g' + f_0 f_2 g = 0, \tag{13}$$

the prime denoting differentiation with respect to r (see Hille (1969)). We can use w as a coordinate on \mathcal{R} .

This give us a picture of the β -curves on \mathcal{F} as in Figure 2. We are interested in solving the field equations on one connected coordinate patch (in general not

intersecting the r=0 axis), corresponding to some interval V on the r-axis in \mathcal{F} . A value of w corresponds to one point of \mathcal{R} if, for any $r \in V$, one can move continuously along the β -curve Q_w , staying within V, from one root of (12) to the other. For example, in Figure 2, w_1 corresponds to one point of \mathcal{R} , whereas w_2 corresponds to two, since Q_{w_2} has two disconnected leaves in V. The curve Q_{∞} is degenerate and always corresponds to two points.

This gives a structure for \mathcal{R} identical to that of the reduced twistor space in Woodhouse & Mason (1988).

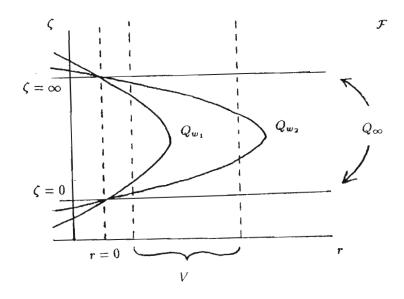


Figure 2

Now, the initial data correspond to a pair of curves on \mathcal{R} . Since, for a particular w, ζ has a double root when $w = -g_1(r)/g_2(r)$ ($\zeta = 0$) and when $w = -g_1(r)/g_2(r)$ ($\zeta = \infty$), we define the curves, parametrised by real values of r, on \mathcal{R} , to be

$$w = -g_1'/g_2', w = -g_1/g_2.$$
 (14)

For each (real) value r_0 of r, the points of the curves on \mathcal{R} are those corresponding to the two β -curves which touch the line $r=r_0$ in \mathcal{F} . There is one curve in each of the "glued down" caps in \mathcal{R} (see Figure 1). In the axis-regular case, where the point r=0 lies in V, the space \mathcal{R} consists of two Riemann spheres glued down over one connected region. In this case, both curves lie in this region and intersect at w=0, which corresponds to the line r=0 in \mathcal{F} .

Indeed, any two functions which define such curves on \mathcal{R} (in either case) contain the information of an initial data set for a cylindrically symmetric space-time M. For, given two arbitrary independent functions g_1, g_2 of r, we can obtain a second order differential equation

$$g'' + ag' + bg = 0 (15)$$

by solving the simultaneous equations

$$g_1'' + ag_1' + bg_1 = 0$$

$$g_2'' + ag_2' + bg_2 = 0$$
(16)

for a and b. Putting

$$-\left(\frac{f_2'}{f_2} + f_1\right) = a, \quad f_0 f_2 = b, \tag{17}$$

gives us two further simultaneous equations for \mathcal{E} and \mathcal{E}_t .

These equations are, of course, rather hard to solve in practise!

It is hoped that the conformal scale of the space-time and the location of \mathcal{H} within the space-time may be encoded as cohomology classes of twistor functions on \mathcal{R} , as these structures will generalise to a non-symmetric space-time. So far, the conformal scale has been encoded, but the "time function" has proved elusive.

References:

Hille, E. (1969) Lectures on Ordinary Differential Equations. (Addison-Wesley, London)

Kramer, D., Stephani, H., MacCallum, M. & Herlt, E. (1980) Exact Solutions of Einstein's Field Equations. (Cambridge University Press, Cambridge)

Penrose, R. & Rindler, W. (1984) Spinors and Space-time, Volume 1— Two-spinor Calculus and Relativistic Fields. (Cambridge University Press, Cambridge)

Woodhouse, N.M.J. & Mason, L.J. (1988) "The Geroch Group and Non-Hausdorff Twistor Spaces", *Nonlinearity*, 1, 73-114.