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Reduced Hypersurface Twistor Spaces — M. Dunn.

In Woodhouse & Mason (1988) twistor space PT was factored out by the
Killing vector symmetries d;, and Jy to obtain a reduced twistor space R with
non-Hausdorfl structure as shown in Figure 1.

In this article it will be shown that for a curved vacuum space-time M
which is cylindrically symmetric (i.e. has spacelike Killing vectors d, and dp),
its hypersurface twistor space can be reduced by those symmetries to give a
reduced hypersurface twistor space R whose structure is identical to that of k.
[t will also be shown how the initial data of the metric on the hypersurface can
be encoded into this structure.

Figure 1

The metric of a cylindrically symmetric space-time can be written in Weyl’s
canonical coordinates:

2
ds? = Q2(de? — dr?) - f(dz + wdb)? — %—d(ﬂ, (1)

where €, f and w are functions of £, 7 only (see Kramer et al. (1980)). The
vacuum field equations Ry, = 0 imply that there exists a potential ¢ such that

¢t = Twr) Y, = Wi (2)
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Defining the Ernst potential € = f + 11, the field equations take the form

grr + ;.l‘gr - gtt - E?(gz “:82)1 (3‘1)
k, (£+£)2 (g (‘: +gt£¢)
(3¢)
ko= gE&E+ 8.

The equation (3a), the evolution equation, is the integrability condition for
equations (3b), the constraint equations, so all the information of the space-
time is contained in £. The values of € and & on a spacelike hypersurface H
constitute the initial data for the space-time.

Recall that hypersurface twistors (strictly speaking, dual hypersurface twis-
tors, which 1 am using for convenience of notation, avoiding a lot of primes!)
correspond to curves in the complex “thickening” of ‘H, CH, called B-curves.
These are the analogue of f-planes in flat space, which do not in general exist
in curved space-times, since the curvature causes integrability problems. How-
ever, the restriction of the f8-plane distribution (the vector fields spanned by
{74V 44}) to CH is just a single vector field

Ve = 1 NBA 5V 440, (4)

where N® is a normal vector field to H. The integral curves of V3 are the
[B-curves.

The spinor 5 is parallelly propagated along the 3-curve, which tells us that
the lift of Vg to the spin bundle S4 is

DA’ 7]
Vga = nANPAyp (VAA’ ~vaas°n® W) , (5)

where 74 5'g© are the spin-coefficients (see Penrose & Rindler (1984)).

We next factor out by the Euler vector field T = n3/d7® to obtain a
vector field Vpga on the projective spin bundle.

Hypersurface twistor space P7™ is the space of S-curves, i.e. the quotient
of PS# by Vpga. We factor out this space by the symmetries induced by 9,
and Jy to obtain R.

Alternatively, we could first reduce PS# by the symmetries to obtain a
space F (and an associated vector field Vr, tangent Lo the 8-curves on F), and
then take the quotient by Vr to get R. This route will give us the structure
of R.

The natural null tetrad to use for a cylindrically symmetric space-time is:

D= 750 +9,), D'= 750 - 9:),
(6)
6:/\<<§+iw)6z~iag), § _A((——W)a +zag)

where A = r=1/f/2. We take our hypersurface to be one of constant time, so
that the normal vector field to H is N® = 004" + 144", The tangent vector
field to the G-curves on CH is

Veoy = —uvD — v + u*6 + w D, ()
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where u = 7%, v = 1. The only non-zero spin-coefficients are
— S | ]
€=—7 = 3500+ %Dw,
— = 1 ]
g =—y= 4D~ LD,
_ 1
p= "z—rDr)

/

p'= 3D,

0= 4D (5 +iw),

o' = £ (5~ iw),
where € = 7590, etc., as in Penrose & Rindler (1984).

This gives us the tangent vector field to the g-curves on F as:

Ve = =20, +/2Q(0'¢ - 2 +€')¢ +0(71) &
(9)
= g—:a,—}-%&c?(,-

where s is a parameter along the -curves and { = v/u. The equation of the
fB-curves on F is therefore

d
—d—r(C2) = fil* + fiC* + fo, (10)
where _ _
o = gizFer (et ),
. 2r rd rd 2 7
Bo= gl (el ),

and where the constraint equations (3b) were used to obtain fy in terms of the
initial data.
Equation (10) is a Riccati equation, with solutions of the form

1 (g’ + wg')
2 1 2
=—-—{——=1, 12
¢ f2 \g1 +wg2 (12)
where w is a constant and g;, g, are linearly independent solutions of
" fé /
g - (E-fo)g + fofag =0, (13)

the prime denoting differentiation with respect to r (see Hille (1969)). We can
use w as a coordinate on R.

This give us a picture of the #-curves on F as in Figure 2. We are interested
in solving the field equations on one connected coordinate patch (in general not
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intersecting the r = 0 axis), corresponding to some interval V on the r-axis in
F. A value of w corresponds to one point of R if, for any r € V, one can move
continuously along the B-curve Q,,, staying within V/, from one root of (12) to
the other. For example, in Figure 2, w; corresponds to one point of ¢, whereas
w, corresponds to two, since @, has two disconnected leaves in V. The curve
Qoo is degenerate and always corresponds to two points.

This gives a structure for R identical to that of the reduced twistor space
in Woodhouse & Mason (1988).

Qu,

o0

e S

Figure 2

Now, the initial data correspond to a pair of curves on R. Since, for a

particular w, { has a double root when w = —g{(r)/g5(r) (( = Q) and when
w = —g1(r)/g2(r) (( = o), we define the curves, parametrised by real values
of r,on R, to be
w = —g1/95,
14
w=—g1/g2 (14)

For each (real) value rg of r, the points of the curves on R are those corre-
sponding to the two (-curves which touch the line r = rg in F. There is one
curve in each of the “glued down” caps in R (see Figure 1). In the axis-regular
case, where the point r = 0 lies in V, the space R consists of two Riemann
spheres glued down over one connected region. In this case, both curves lie in
this region and intersect at w = 0, which corresponds to the line r = 0 in F.



1é

Indeed, any two functions which define such curves on R (in either case)
contain the information of an initial data set for a cylindrically symmetric
space-time M. For, given two arbitrary independent functions gy, g; of r, we
can obtain a second order differential equation

g"+ag +bg=090 (15)
by solving the simultaneous equations

g7 +agi +bgy =0

(16)
97 +agy +bga =0
for a and b. Putting
!
- (% + fl) —a, fofa=b, ()

gives us two further simultaneous equations for £ and &;.

These equations are, of course, rather hard to solve in practise!

It is hoped that the conformal scale of the space-time and the location
of H within the space-time may be encoded as cohomology classes of twistor
functions on R, as these structures will generalise to a non-symmetric space-
time. So far, the conformal scale has been encoded, but the “time function”
has proved elusive.
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