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Abstract

In this article we will show somne close connections between the stabi-
lizers of the coadjoint action of Dif f(.S')/S? on its dual i.e. the space of
Hill operators and the Neumann system. The main point of this article
is to show some interesting features of celebrated paper of Knorrer and of
Kirillov’s work.

1 Introduction

The Neumann system deals with the motion of a particle on a sphere
under the influence of a quadratic potential. This system is completely
integrable and given solutions by hyperelliptic theta function. Moser [Mo]
observed that the integrals of the Hamiltonian system describing the mo-
tion of Neumann system have a very close similarity with the integrals
of the Hamiltonian system describing the geodesics on a quadric. Knorrer
[Kn] showed in his paper that the Neumann problem can be recast through
the Gauss map as the geodesic motion problemn on a quadric.

On the other hand we know from the work of Segal [Se] and Kirillov
[Ki] that the KdV equation is the Euler equation for a central extension
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of the group Diff(S*)/S*. The centrally extended Dif/f\(Sl)/(S‘) ®Ris
described by the Gelfand-Fuks cocycle [Ki]

d d 1 I/t . 1
(flﬂyfza‘) — :?_/51 §1&5dz, & € Vect(S").

Let us recall that the dual space of Dif f(S!)/S! is the space of quadratic
differentials 2©% and the dual of the Dif f(S1)/S! is the space of Hill op-
erators {)\di:; + q}.

(From now we shall denote Diff(gl)/Sl by ¥ and the space of Hill

operators by H(s).
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2 Coadjoint action and characterization

Let us consider the covariant transformation L = /\J‘gy + g(z) under a S*
diffeomorphism.

L — L induced by S! diffeomorphism.
r — s(z) =z +ef(z)
_ 51, 43/2 d ., /2
L=t q(e) — L= (e A+ o)

d? .
= )\@ + §(z)

where
1 1"

(o) = '@ als(@) + 35 - 35
When $(z) = z + ¢f(z), this becomes

- 1

§=8q +2'q+ A"
Let us confine our attention to a specific hyper-plane A = —1 in the coad-
joint orbit. The action in this hyperplane will be

. 1
§=¢q+2g - 56",
Now we seek to characterize the :pa‘irs (q(z)(dz)? ~1). We proceed by

~ looking at the stabilizer of the action of E(z)f; on the dual (¢(z)dz?, -1)
i.e. (€, a) € Stub(g,~1) if and only if

" =2¢¢+4g€". (%)
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Proposition 2.1 If§ =< x, A~ 'x > and satisfies
§"=28q" +4&'q

then x satisfies

X =—Ax+ax
where < x,x >= 1 and g =< x, Ax > — < X, X > which 1s the system of
Neumann equations.

proof :: Let £ =< x, A™'x > then & = 2 < x,A~!x >. Then after
using the condition of the Neumann equation, we obtain

€= -2+2E+2< %, AT >
Taking one more derivative we get

glll — 4q€l + 2ql§

Karen Uhlenbeck [Uh] found the algebraic integrals for the Neumann
problem. For p, ¢ € R™ let ®,(p, q) € C(A) be the rational function

n

®x(p,q) = Z Z (ofp =5 (Z],ql) 2)

= l

Moser [Mo] gave a nice geometrical interpretation of the zeros of these
rational function. In particular

q)0(X1X) =0

and Knorrer showed also

200(x, ) = £/2 — (£ - 2€)¢.

Knorrer showed when £ satisfies £ = 2¢'€+4¢€' and € :=< x(z), A" x(2) >
then the —% density ¢ satisfies an auxiliary equation, Schrodinger equation

=0 e

Recall that if & € Vect(S'), then ¢ € 272 je. the space of scalar
densities of weight —1/2.
Let us define
G=God G

, where we denote Go = Vect(S!) and G; = Q~Y2(S!). G, is the Gy
module and it is compatible with the structure of Gg module and satisfies
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Gi X G — Go. This is quite natural if we identify Vect(S?) and 271(S?).
A typical element of G would be

d d '/

Proposition 2.2 (Kirillov [Ki]) G has the structure of a super Lie al-
gebra.

In this realization £(z) diiz—e)L(a:) %‘/2 i.e. (§,¢) forms a super Lie algebra.

(+) and (+*) give the stabilizer of a point in the dual space to a super Lie
algebra. (,¢) satisfies

§(z + 27) = £(2)

o(z 4+ 2m) = tu(z)
When it is ‘+ ’ it is called Ramond sector super Lie algebra and for ‘- it
is known as Neveu-Schwarz sector.

We wish to know more about «. We shall use Knérrer’s construction.
He made use of the usual Gauss mapping of the quadric onto the unit
sphere which takes a point on the quadric into the exterior unit normal.

Knérrer showed that Jacobi field along this geodesic motion satisfies
mKdV equation where £ € Vect(S!) and « € Q1/2,

In the next section we will give a geometrical meaning of ¢(z). We will
show it is the tau function of the Jacobi field equation, in this case mKdV
equation.

3 Geometrical meaning of ¢

As we mentioned earlier that Knérrer showed the geodesics on quadrics
problem is intimately related to the C. Neumann problem.

Theorem 3.1 (Knorrer) Let Q C R™ be a quadric Q = {t € R*|U(t) =
0} and A := (5%1—,). The geodesic z(t) on Q is parametrized by

t(z) = Rt(z) + wi(z)
where R is the gradient of the function U(z) in z. Let £(z) be the unit
normal vector of Q in the point t(z)

1

— 2
€ = 1.X(t) where * = RORO >
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Then £(t) satisfies Neumann equation

. 1 1
€ = A& + ¢€ where g := sz’ - iw
where
G <R A >
< At >

So there exist a one to one correspondence between the solutions of Neu-
mann equation and geodesic on the quudric.

Knérrer also showed that the Jacobi-field along the geodesic t(z) sat-

isfies mKdV equation
dw 3 4, ,

1

s 4
By a simple calculation one can show that

1
2

w= —25;logt
The geometrical construction of solutions of the KdV hierarchy is based
on an infinite dimensional grassmannian Gr(?) defined as follows. Let
L*(S',C) be the Hilbert space H and multiplication by z is a unitary
operator on the Hil bert space. Let H; be the Hilbert subspace of H
consisting of boundary values of holomorphic function in the disc |2] < 1.
Then Grassmannian is the closed subspace W C H, satisfies

(1) 22w cw
(2) Pr. :W — Hy
is a Fredholm operator
(3) Pr_ : W — H_

is a Hilbert Schmidt operator. Last two conditions mean that W is com-
parable with H,.

To interpret the mKdV equation we recall Wilson’s [Wi] construction.
Let W € Gr"(2) be a point in the Grassmannian, satisfying 22W C W.
Then W/2?W has dimension n. Let FI(2) be the periodic flag manifold
consists of a pair (Wo, W1) of closed subspaces H = L*(S!, C) such that
Wo € Gr(® then

22W0 C ZIWI C Wy
where z! W1 has codimension 1in W. W, is a point of FI? and r; is the

7 - function of W;. Corresponding to this the mKdV solution is given by

4] )
v; = glog(r,‘/rgﬂ) for0<i<1

and 75 = 71g.

So it follows from our discussion that
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Proposition 3.2 ¢ can be interpreted as a T function of the mKdV equa-
tion.

4 Summary

In this paper we have shown that if{(m)f; € Stab(q, —1) then it satisfies (*)
and auxiliary equation satisfies (¥%) where £ = ¢(z)?. Then (¢,1) satisfies
super Lie algebra. We have shown that for a particular choice of £ =<
X, A™tx > in (*), x satisfies Neumann equation. One can connect the
Neumann system to geodesics on the quadric through Gauss mapping.
Its Jacobi flow satisfies the mKdV equation and we interpret ¢ as the
function of the mKdV equation.
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