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Deformed Twistor spaces and the KP equation

While twistor theory continues to come to terms with the geometry of the KP equation,
one closely related (2 + 1)-dimensional integrable system that does possess such a description
is the dispersionless KP (or dKP) equation:

(u2e — Uaa)a = Uzyy - (1)
This arises from the following equations for the 2-form w(A) :

w(A)Aw(A) = 0,
dw(d) = 0

?

where w = dB; A dz + dB; A dy + dB3 A dt, and

Bl = /\,
/\2
B, = 5 + ug(z,y,t),
/\3
By = ) + ,\uz(m,y,t) + ug(z,y,t).

Equation (2) is equivalent to the zero-curvature equation

0B, 0B,
o oy T +{Bs,B3} = 0 (3)
with { , } being the Poisson bracket
_0fdg _0690f
Uodh = 53%s " oa 00

Equating powers of A in (3) gives, on eliminating us(z,y,t) the dKP equation (1). Equation
(2) imply (locally) the existence of functions P(A) and Q(A) such that w = dP A dQ, and any

two such set of coordinates are connected by a Riemann-Hilbert problem.

Conventional approaches to the KP equation use the algebra of pseudo-differential operators.
However, an alternative approach which is closer to the above derivation of the dKP equation
may be obtained by replacing the Poisson bracket in (3) with the Moyal bracket [1]:

- 2- 2s+1

{fig}e = Z 2 + 1)' Z(— ( 28;— 1 ) (81825+1~Jf)(620+1—ja§g). (4)

With the same B, and B; as before equation (3) gives (on replacing the Poisson bracket with
the Moyal bracket and on eliminating u3) the KP equation

1.2 —_
( EK' U2,z2z + Ut — UU2 ) = Uz yy - (5)
z

In the £ — 0 limit the Moyal bracket collapses to the Poisson bracket and one recovers the
dKP equation. Thus we have a description of the KP equation which avoids the use of pseudo-
differential operators. A similar Moyal-algebraic deformation of the self-dual vacuum equation
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was introduced in [2] and shown by Takasaki (3] to be integrable via a Riemann-Hilbert problem
in the corresponding Moyal loop group.

At first sight the definition (4) looks somewhat unwieldy, but it is, in many ways, very
natural. If one wants to deform the Poisson bracket by introducing higher-order derivative
terms, the Jacobi identity turns out to be highly restrictive, and one is automatically lead to
the Moyal bracket. Moreover, the bracket may be written in terms of an associative x-product

{figlu=frxg—gxf.
Such *-products have a long history, having been studied by both Moyal [1] and Weyl [4].

Thus, in conclusion, one possible approach to the understanding of the geometry of the
KP equation might be to try to formulate a version of twistor theory which makes use of this
deformed Poisson bracket.
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Reduced Hypersurface Twistor Spaces — M. Dunn.

In Woodhouse & Mason (1988) twistor space PT was factored out by the
Killing vector symmetries d;, and Jy to obtain a reduced twistor space R with
non-Hausdorfl structure as shown in Figure 1.

In this article it will be shown that for a curved vacuum space-time M
which is cylindrically symmetric (i.e. has spacelike Killing vectors d, and dp),
its hypersurface twistor space can be reduced by those symmetries to give a
reduced hypersurface twistor space R whose structure is identical to that of k.
[t will also be shown how the initial data of the metric on the hypersurface can
be encoded into this structure.

Figure 1

The metric of a cylindrically symmetric space-time can be written in Weyl’s
canonical coordinates:

2
ds? = Q2(de? — dr?) - f(dz + wdb)? — %—d(ﬂ, (1)

where €, f and w are functions of £, 7 only (see Kramer et al. (1980)). The
vacuum field equations Ry, = 0 imply that there exists a potential ¢ such that

¢t = Twr) Y, = Wi (2)
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Defining the Ernst potential € = f + 11, the field equations take the form

grr + ;.l‘gr - gtt - E?(gz “:82)1 (3‘1)
k, (£+£)2 (g (‘: +gt£¢)
(3¢)
ko= gE&E+ 8.

The equation (3a), the evolution equation, is the integrability condition for
equations (3b), the constraint equations, so all the information of the space-
time is contained in £. The values of € and & on a spacelike hypersurface H
constitute the initial data for the space-time.

Recall that hypersurface twistors (strictly speaking, dual hypersurface twis-
tors, which 1 am using for convenience of notation, avoiding a lot of primes!)
correspond to curves in the complex “thickening” of ‘H, CH, called B-curves.
These are the analogue of f-planes in flat space, which do not in general exist
in curved space-times, since the curvature causes integrability problems. How-
ever, the restriction of the f8-plane distribution (the vector fields spanned by
{74V 44}) to CH is just a single vector field

Ve = 1 NBA 5V 440, (4)

where N® is a normal vector field to H. The integral curves of V3 are the
[B-curves.

The spinor 5 is parallelly propagated along the 3-curve, which tells us that
the lift of Vg to the spin bundle S4 is

DA’ 7]
Vga = nANPAyp (VAA’ ~vaas°n® W) , (5)

where 74 5'g© are the spin-coefficients (see Penrose & Rindler (1984)).

We next factor out by the Euler vector field T = n3/d7® to obtain a
vector field Vpga on the projective spin bundle.

Hypersurface twistor space P7™ is the space of S-curves, i.e. the quotient
of PS# by Vpga. We factor out this space by the symmetries induced by 9,
and Jy to obtain R.

Alternatively, we could first reduce PS# by the symmetries to obtain a
space F (and an associated vector field Vr, tangent Lo the 8-curves on F), and
then take the quotient by Vr to get R. This route will give us the structure
of R.

The natural null tetrad to use for a cylindrically symmetric space-time is:

D= 750 +9,), D'= 750 - 9:),
(6)
6:/\<<§+iw)6z~iag), § _A((——W)a +zag)

where A = r=1/f/2. We take our hypersurface to be one of constant time, so
that the normal vector field to H is N® = 004" + 144", The tangent vector
field to the G-curves on CH is

Veoy = —uvD — v + u*6 + w D, ()
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where u = 7%, v = 1. The only non-zero spin-coefficients are
— S | ]
€=—7 = 3500+ %Dw,
— = 1 ]
g =—y= 4D~ LD,
_ 1
p= "z—rDr)

/

p'= 3D,

0= 4D (5 +iw),

o' = £ (5~ iw),
where € = 7590, etc., as in Penrose & Rindler (1984).

This gives us the tangent vector field to the g-curves on F as:

Ve = =20, +/2Q(0'¢ - 2 +€')¢ +0(71) &
(9)
= g—:a,—}-%&c?(,-

where s is a parameter along the -curves and { = v/u. The equation of the
fB-curves on F is therefore

d
—d—r(C2) = fil* + fiC* + fo, (10)
where _ _
o = gizFer (et ),
. 2r rd rd 2 7
Bo= gl (el ),

and where the constraint equations (3b) were used to obtain fy in terms of the
initial data.
Equation (10) is a Riccati equation, with solutions of the form

1 (g’ + wg')
2 1 2
=—-—{——=1, 12
¢ f2 \g1 +wg2 (12)
where w is a constant and g;, g, are linearly independent solutions of
" fé /
g - (E-fo)g + fofag =0, (13)

the prime denoting differentiation with respect to r (see Hille (1969)). We can
use w as a coordinate on R.

This give us a picture of the #-curves on F as in Figure 2. We are interested
in solving the field equations on one connected coordinate patch (in general not
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intersecting the r = 0 axis), corresponding to some interval V on the r-axis in
F. A value of w corresponds to one point of R if, for any r € V, one can move
continuously along the B-curve Q,,, staying within V/, from one root of (12) to
the other. For example, in Figure 2, w; corresponds to one point of ¢, whereas
w, corresponds to two, since @, has two disconnected leaves in V. The curve
Qoo is degenerate and always corresponds to two points.

This gives a structure for R identical to that of the reduced twistor space
in Woodhouse & Mason (1988).

Qu,

o0

e S

Figure 2

Now, the initial data correspond to a pair of curves on R. Since, for a

particular w, { has a double root when w = —g{(r)/g5(r) (( = Q) and when
w = —g1(r)/g2(r) (( = o), we define the curves, parametrised by real values
of r,on R, to be
w = —g1/95,
14
w=—g1/g2 (14)

For each (real) value rg of r, the points of the curves on R are those corre-
sponding to the two (-curves which touch the line r = rg in F. There is one
curve in each of the “glued down” caps in R (see Figure 1). In the axis-regular
case, where the point r = 0 lies in V, the space R consists of two Riemann
spheres glued down over one connected region. In this case, both curves lie in
this region and intersect at w = 0, which corresponds to the line r = 0 in F.
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Indeed, any two functions which define such curves on R (in either case)
contain the information of an initial data set for a cylindrically symmetric
space-time M. For, given two arbitrary independent functions gy, g; of r, we
can obtain a second order differential equation

g"+ag +bg=090 (15)
by solving the simultaneous equations

g7 +agi +bgy =0

(16)
97 +agy +bga =0
for a and b. Putting
!
- (% + fl) —a, fofa=b, ()

gives us two further simultaneous equations for £ and &;.

These equations are, of course, rather hard to solve in practise!

It is hoped that the conformal scale of the space-time and the location
of H within the space-time may be encoded as cohomology classes of twistor
functions on R, as these structures will generalise to a non-symmetric space-
time. So far, the conformal scale has been encoded, but the “time function”
has proved elusive.
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A twistor construction of irreducible
torsion-iree (G-structures

Sergey A. Merkulov
School of Mathematics and Statistics, University of Plymouth
Plymouth, Devon PL4 8AA, United Kingdom

0. Introduction. One of the most useful characteristics of an affine connection on a
manifold M is its (restricted) holonomy group which is defined, up to a conjugation, as
a subgroup of GL{T,M) consisting of all automorphisms of the tangent space ;M at a
point ¢ € M induced by parallel translations along the t-based contractable loops in M.
Which groups can occur as holonomies of affine connections? By Hano and Ozeki {H-O],
any closed subgroup of a general linear group can be realized as a holonomy of some
affine connection (which in general has non-vanishing torsion tensor). The same question,
when restricted to the class of torsion-free affine connections only, is not yet answered.
According to Berger [B], the list of all possible irreducibly acting holonomies of torsion-iree
affine connections is very restricted. How much is known about this list? In his seminal
paper [B], Berger found a list of groups which embraces all possible holonomies of torsion-
free metric connections, though his approach provides no method to distinguish which
entries can indeed be realized as holonomies and which are superfluous. Later much work
has been done to refine this list and to prove existence of Riemannian metrics with special
holonomies {Al, Brl, Br2, S]. In the same paper Berger presented also a list of all but a
finite number of possible candidates to irreducible holonomies of "non-metric” torsion-free
affine connections. How many holonomies are missing from this second list is not known,
but, as was recently shown by Bryant [Br3], the set of missing, or ezotic, holonomies is non-
empty. As usual in the representation theory, in order to get a deeper understanding of all
irreducible real holonomies one should first try to address a complex version of the problem.
The main result announced in this paper asserts that any torsion-free holomorphic affine
connection with irreducibly acting holonomy group can be generated by twistor methods.

1. Complex contact structures. Let Y be a complex (2n + 1)-dimensional manifold.
A complex contact structure on Y is a rank 2n holomorphic subbundle D C TY of the
holomorphic tangent bundle to Y such that the Frobenius form
¢:DxD -— TY/D
(v,w) — [v,w]mod D
is non-degenerate. A complex n-dimensional submanifold X of the complex contact man-
ifold Y is called a Legendre submanifold if TX C D. The normal bundle of a Legendre

submanifold X < Y is isomorphic to J'Lyx [L2], where Lx = L|y and L is the contact
line bundle on Y defined by the exact sequence

0—D—TY —L—0.
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Given a Legendre subnamifold X — Y, there is a naturally associated "flat” model, X —
J'Lx, consisting of the total space of the vector bundle J!Lx together with its canonical
contact structure and the Legendre submanifold X realized as a zero section of J'Lx — X.
The Legendre submanifold X < Y is called k-flat if the kth-order Legendre jet [L2]
of X in Y is isomorphic to the kth-order Legendre jet of X in J'Ly. Every complex
Legendre submanifold is 1-flat, while the obstruction to be 2-flat is a cohomology class in

HY(X, Lx ® S*(J'Lx)").

2. Irreducible G-structures. Let M be an m-dimensional complex manifold and £*M
the holomorphic coframe bundle 7 : £L*M — M whose fibers L;M = n~1(t) consist of all
C-linear isomorphisms e : C® — QM. The space L*M is a principle right GL(m,C)-
bundle with the right action given by R,(e) = eog. If G is a closed subgroup of GL(m,C),
then a (holomorphic) G-structure on M is a principle subbundle G of £L*M with the group
G. Tt is clear that there is a one-to-one correspondence between the set of G-structures on
M and holomorphic sections o of the quotient bundle # : L*M/G — M whose typical fibre
is isomorphic to GL(m,C)/G. A G-structure on M is called locally flat if L*M /G can be
trivialized over a sufficiently small neighbourhood, U, of each point ¢ € M in such a way
that the associated section o of £L*M/G is represented over U by a constant GL(m,C)/G-
valued function. A G-structure is called I-flat if, for each ¢ € M, the first jet of the
associated section o of L*M /G at t is isomorphic to the first jet of some locally flat section
of L*M/G. 1t is easy to show that a G-structure admits a torsion-free affine connection if
and only if it is 1-flat (cf. [Br2]). A G-structure on M is called irreducible if the action of
G on C™ leaves no non zero invariant sulbspa.ces.

3. Main theorem. Recall that a generalized flag variety X is a compact simply connected
homogeneous Kahler manifold [B-E]). Any such a manifold is of the form X = H/P, where
H is a complex semisimple Lie group and P C H a fixed parabolic subgroup.

Theorem 1 Let X be a generalised flag varity embedded as a Legendre submanifold into
a complex contact manifold Y with contact line bundle L such that h°(X,Lx) = m > 0.
Then ‘

() There exists a complete family {X; < Y |t € M} of compact complex Legendre
submanifolds obtained by holomorphic deformations of X inside Y. Fach submanifold
X is isomorphic to X. The moduli space M, called a Legendre moduli space, is an
m-dimensional complez manifold.

(11) The Legendre submanifold X — Y is stable under holomorphic deformations of the
contact structure on (the tubular neighbourhood of X in) Y.

(vit) For each t € M, there is a canonical isomorphism s : TM — H°(X,, Lx,) rep-

resenting a tangent vector at t as a global holomorphic section of the line bundle
LX‘ = le:'

(tv) The Legendre moduli space M comes equipped with an induced irreducible G-structure,
Ginda = M, with G isomorphic to the group of all global biholomorphisms ¢ : Lx — Ly
which commulte with the projection w : Ly — X.
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(v) The induced G-structure on M 1s [-flat (i.e. torsion-free) if and only if the complete

(vi)

family {X, = Y |t € M} consists of 2-flat Legendre submanifolds. The obstruction
for the induced torsion-free G-structure to be locally flat is given by a tensor field
on M whose value at each point t € M is represented by a cohomology class p, in

H! (Xg, Lx, ® SS(JILX‘)').

Let G € GL(m,C) be one of the following groups: (a) SO(2n + 1,C) when m =
2n+2>8; (b) Sp(2n+2,C) whenm =2n+2 > 4; (c¢) G, whenm = 7. IfG is any
torsion-free G x C*-structure on an m-dimensional manifold M, then there erists a
complex contact manifold (Y, L) and a generalized flag variety X embedded into Y
as a Legendre submanifold such that, at least locally, M is canonically isomorphic to
the associated Legendre moduli space and G C Ging. In the case (a) X = SO(2n +
2,C)/U(n + 1) and Ging is a CO(2n + 2,C)-structure; in the case (b)) X = CP¥*!
and Ging 15 a GL(2n + 2,C)-structure; and in the case (c) X = Qs and Ging 18 a
CO(7,C)-structure.

(vit) Let G C GL(m,C) be an aribirary semisimple Lie subgroup except the ones consid-

ered in (vi). If G is any torsion-free G x C*-structure on an m-dimensional manifold
M, then there exists a complex contact manifold (Y,L) and a Legendre submanifold
X <Y with X = G/P for some parabolic subgroup P C G such that, at least locally,
M is canonically isomorphic to the associated Legendre moduli space and G = Ginq.

Remarks:

L.

The Lie algebra of the group G of all global biholomorphisms Ly — Ly
which commute with the projection m : Ly — X is exactly the vector space
H®(X,Lx ® (J'Lx)") with its natural Lie algebra structure [Mel]. If X = H/P,
then the induced G-structure on the associated Legendre moduli space is often iso-
morphic to H x C*, but there are exceptions [A] which are considered in Theo-
rem 1(vi). In these exceptional cases the originial G-structure may not be equal to
the induced one, and one might try to identify some additional structures on the
associated twistor spaces (Y, L) which ensure that G;,; admits a necessary reduction.
However, in the context of problems discussed in the introduction there is no need
in such a study, because these "exceptional” G-structures are fairly well understood
by now [B, Brl, Br2, §]. If there is an exotic torsion-free G-structure other than
Bryant’s G [Br3], it must be covered, up to a C* action, by the "generic” clause (vii)
in Theorem 1.

Two particular examples of this general construction have been considered earlier
[L1, Br3]. The first example is a pair X <3 Y consisting of an n-quadric Q, em-
bedded into a (2n + 1)-dimensional contact manifold (Y, L) with L]y ~ i*Ocpn+1(1),
i: Qn — CP™! being a standard projective realization of Q,.. It is easy to check that
in this case H°(X, Lx ® (J'Lx)") is precisely the conformal algebra implying that the
associated (n+2)-dimensional Legendre moduli space M comes equipped canonically
with a conformal structure. This is in accord with LeBrun’s paper [L1], where it has
been shown how a conformal Weyl connection can be encoded into complex contact
structure on the space of complex null geodesics. Since H! (X, Lx ® S*(J'Lx)*) =0,
the induced conformal structure must be torsion-free in agreement with the classi-
cal result of differential geometry. Easy calculations show that the vector space



10

H'(X,Lx ® S®(J'Lx)") is exactly the subspace of TM ® Q'M ® Q*M consisting of
tensors with Weyl curvature symmetries. Thus Theorem 1(v) implies the well-known
Schouten conformal flatness criterion.

The second example, which also was among motivations behind the present work,
is Bryant’s [Br3| relative deformation problem X < Y with X being a rational
Legendre curve CP! in a complex contact 3-fold (Y, L) with Lx = O(3). Calculating
H(X,Lx ® (J'Lx)*), one easily concludes that the induced G-structure, Ging, on
the associated 4-dimensional Legendre moduli space is exactly an exotic Gi3-structure
which has been studied by Bryant in his search for irreducibly acting holonomy groups
of torsion-free affine connections which are missing in the Berger list [B]. Since
HY(X,Lx ® S*(J'Lx)*) = 0, Theorem 1(v) says the induced G3-structure is torsion-
free in accordance with [Br3]. The cohomology class p, € H' (X, Lx ® S*(J'Lx)*)
from Theorem 1(v) is exactly the curvature tensor of the unique torsion-free affine
connection with G3-holonomy.

. Much of the above theorem remains true when the assumption that the Legendre
submanifold X is a generalized flag variety is replaced by the assumption that X is
a compact complex manifold such that H'(X, Lx) = 0 [Mel].

. Any reductive non-semisimple irreducibly acting holonomy group must be of the form
G x C* (cf. Theorem 1(vi) and (vii)), where G is semisimple [B].

. Usually in the twistor theory one works with Kodaira [K] moduli spaces [P], that is
with complete families {X; — Y | t € M} of compact complex submanifolds of a
complex manifold Y obtained by all holomorphic deformations of a fixed submanifold
X — Y inside Y. Any such a family can be canonically interpreted as a complete
family {X, < Y | t € M} of compact Legendre submanifolds — take Y = Py(QY)
with its natural contact structure and X, = Px,(N;), where N{ is the conormal
bundle of X;. The point is that the map

(Xi Y |te M}—{X, <Y |te M}

preserves completeness while changing its meaning. This construction together with
Theorem 1 imply that Kodaira moduli spaces often come equipped with induced
geometric structures. Other (and more fine) results in this direction are discussed in

[Me2, Me3, M-P].

Acknowledgments. It is a pleasure to thank D.V. Alekseevski, T. Bailey, M. Eastwood,
S. Huggett, L. Mason, H. Pedersen, Y.-S. Poon and P. Tod for valuable comments and
remarks. [ am grateful to the University of Odense, St. John’s College of Oxford Univer-
sity and the Erwin Schrédinger International Institute for hospitality during the work on
different stages of this project.
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Abstract

In this article we will show somne close connections between the stabi-
lizers of the coadjoint action of Dif f(.S')/S? on its dual i.e. the space of
Hill operators and the Neumann system. The main point of this article
is to show some interesting features of celebrated paper of Knorrer and of
Kirillov’s work.

1 Introduction

The Neumann system deals with the motion of a particle on a sphere
under the influence of a quadratic potential. This system is completely
integrable and given solutions by hyperelliptic theta function. Moser [Mo]
observed that the integrals of the Hamiltonian system describing the mo-
tion of Neumann system have a very close similarity with the integrals
of the Hamiltonian system describing the geodesics on a quadric. Knorrer
[Kn] showed in his paper that the Neumann problem can be recast through
the Gauss map as the geodesic motion problemn on a quadric.

On the other hand we know from the work of Segal [Se] and Kirillov
[Ki] that the KdV equation is the Euler equation for a central extension
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of the group Diff(S*)/S*. The centrally extended Dif/f\(Sl)/(S‘) ®Ris
described by the Gelfand-Fuks cocycle [Ki]

d d 1 I/t . 1
(flﬂyfza‘) — :?_/51 §1&5dz, & € Vect(S").

Let us recall that the dual space of Dif f(S!)/S! is the space of quadratic
differentials 2©% and the dual of the Dif f(S1)/S! is the space of Hill op-
erators {)\di:; + q}.

(From now we shall denote Diff(gl)/Sl by ¥ and the space of Hill

operators by H(s).

Acknowledgement : I wish to thank Jack Evans, Pablo Gastesi and
Jyoti Sengupta for their interest, support and discussions.

2 Coadjoint action and characterization

Let us consider the covariant transformation L = /\J‘gy + g(z) under a S*
diffeomorphism.

L — L induced by S! diffeomorphism.
r — s(z) =z +ef(z)
_ 51, 43/2 d ., /2
L=t q(e) — L= (e A+ o)

d? .
= )\@ + §(z)

where
1 1"

(o) = '@ als(@) + 35 - 35
When $(z) = z + ¢f(z), this becomes

- 1

§=8q +2'q+ A"
Let us confine our attention to a specific hyper-plane A = —1 in the coad-
joint orbit. The action in this hyperplane will be

. 1
§=¢q+2g - 56",
Now we seek to characterize the :pa‘irs (q(z)(dz)? ~1). We proceed by

~ looking at the stabilizer of the action of E(z)f; on the dual (¢(z)dz?, -1)
i.e. (€, a) € Stub(g,~1) if and only if

" =2¢¢+4g€". (%)
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Proposition 2.1 If§ =< x, A~ 'x > and satisfies
§"=28q" +4&'q

then x satisfies

X =—Ax+ax
where < x,x >= 1 and g =< x, Ax > — < X, X > which 1s the system of
Neumann equations.

proof :: Let £ =< x, A™'x > then & = 2 < x,A~!x >. Then after
using the condition of the Neumann equation, we obtain

€= -2+2E+2< %, AT >
Taking one more derivative we get

glll — 4q€l + 2ql§

Karen Uhlenbeck [Uh] found the algebraic integrals for the Neumann
problem. For p, ¢ € R™ let ®,(p, q) € C(A) be the rational function

n

®x(p,q) = Z Z (ofp =5 (Z],ql) 2)

= l

Moser [Mo] gave a nice geometrical interpretation of the zeros of these
rational function. In particular

q)0(X1X) =0

and Knorrer showed also

200(x, ) = £/2 — (£ - 2€)¢.

Knorrer showed when £ satisfies £ = 2¢'€+4¢€' and € :=< x(z), A" x(2) >
then the —% density ¢ satisfies an auxiliary equation, Schrodinger equation

=0 e

Recall that if & € Vect(S'), then ¢ € 272 je. the space of scalar
densities of weight —1/2.
Let us define
G=God G

, where we denote Go = Vect(S!) and G; = Q~Y2(S!). G, is the Gy
module and it is compatible with the structure of Gg module and satisfies
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Gi X G — Go. This is quite natural if we identify Vect(S?) and 271(S?).
A typical element of G would be

d d '/

Proposition 2.2 (Kirillov [Ki]) G has the structure of a super Lie al-
gebra.

In this realization £(z) diiz—e)L(a:) %‘/2 i.e. (§,¢) forms a super Lie algebra.

(+) and (+*) give the stabilizer of a point in the dual space to a super Lie
algebra. (,¢) satisfies

§(z + 27) = £(2)

o(z 4+ 2m) = tu(z)
When it is ‘+ ’ it is called Ramond sector super Lie algebra and for ‘- it
is known as Neveu-Schwarz sector.

We wish to know more about «. We shall use Knérrer’s construction.
He made use of the usual Gauss mapping of the quadric onto the unit
sphere which takes a point on the quadric into the exterior unit normal.

Knérrer showed that Jacobi field along this geodesic motion satisfies
mKdV equation where £ € Vect(S!) and « € Q1/2,

In the next section we will give a geometrical meaning of ¢(z). We will
show it is the tau function of the Jacobi field equation, in this case mKdV
equation.

3 Geometrical meaning of ¢

As we mentioned earlier that Knérrer showed the geodesics on quadrics
problem is intimately related to the C. Neumann problem.

Theorem 3.1 (Knorrer) Let Q C R™ be a quadric Q = {t € R*|U(t) =
0} and A := (5%1—,). The geodesic z(t) on Q is parametrized by

t(z) = Rt(z) + wi(z)
where R is the gradient of the function U(z) in z. Let £(z) be the unit
normal vector of Q in the point t(z)

1

— 2
€ = 1.X(t) where * = RORO >
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Then £(t) satisfies Neumann equation

. 1 1
€ = A& + ¢€ where g := sz’ - iw
where
G <R A >
< At >

So there exist a one to one correspondence between the solutions of Neu-
mann equation and geodesic on the quudric.

Knérrer also showed that the Jacobi-field along the geodesic t(z) sat-

isfies mKdV equation
dw 3 4, ,

1

s 4
By a simple calculation one can show that

1
2

w= —25;logt
The geometrical construction of solutions of the KdV hierarchy is based
on an infinite dimensional grassmannian Gr(?) defined as follows. Let
L*(S',C) be the Hilbert space H and multiplication by z is a unitary
operator on the Hil bert space. Let H; be the Hilbert subspace of H
consisting of boundary values of holomorphic function in the disc |2] < 1.
Then Grassmannian is the closed subspace W C H, satisfies

(1) 22w cw
(2) Pr. :W — Hy
is a Fredholm operator
(3) Pr_ : W — H_

is a Hilbert Schmidt operator. Last two conditions mean that W is com-
parable with H,.

To interpret the mKdV equation we recall Wilson’s [Wi] construction.
Let W € Gr"(2) be a point in the Grassmannian, satisfying 22W C W.
Then W/2?W has dimension n. Let FI(2) be the periodic flag manifold
consists of a pair (Wo, W1) of closed subspaces H = L*(S!, C) such that
Wo € Gr(® then

22W0 C ZIWI C Wy
where z! W1 has codimension 1in W. W, is a point of FI? and r; is the

7 - function of W;. Corresponding to this the mKdV solution is given by

4] )
v; = glog(r,‘/rgﬂ) for0<i<1

and 75 = 71g.

So it follows from our discussion that
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Proposition 3.2 ¢ can be interpreted as a T function of the mKdV equa-
tion.

4 Summary

In this paper we have shown that if{(m)f; € Stab(q, —1) then it satisfies (*)
and auxiliary equation satisfies (¥%) where £ = ¢(z)?. Then (¢,1) satisfies
super Lie algebra. We have shown that for a particular choice of £ =<
X, A™tx > in (*), x satisfies Neumann equation. One can connect the
Neumann system to geodesics on the quadric through Gauss mapping.
Its Jacobi flow satisfies the mKdV equation and we interpret ¢ as the
function of the mKdV equation.
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Geometric Aspects of Quantum Mechanics
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Abstract. A general theory of non-linear quantum mechanics 1s considered, for which
the state space is a complex manifold with a compatible Riemannian structure: states
are points, observables are smooth functions, and the value of an observable at a point
is the expectation of the observable in that state. Such a state manifold has a natural
symplectic structure that leads to the definition of a Poisson bracket for pairs of
functions; the commutator of two observables is —i times the Poisson bracket of the
corresponding functions. Associated with each observable is a canonical vector field,
obtained by taking its symplectic gradient. The magnitude of such a vector field with
respect to the Riemannian metric is proportional to the squared uncertainty of the
associated observable, and the usual Heisenberg relations can be seen to hold. The
Schrodinger evolution of a state is then described by the special canonical vector field
for which the generating function is the expectation of the physical Hamiltonian. The
general framework of non-linear quantum mechanics is equivalent to a classical
dynamical system on the quantum mechanical state manifold, a result that is a fortriori
also valid for ordinary linear quantum mechanics. The rate of evolution of a quantum
mechanical system along a Schrodinger trajectory in the non-linear theory is twice the
uncertainty in the Hamiltonian; this generalises a result in the linear theory due to
Anandan & Aharonov (1990). The relation of the non-linear theory to the linear
theory is analysed, and in the case for which the state manifold is complex projective
space and the Riemannian structure is the unitary-symmetric Fubini-Study metric the
theory can be shown to reduce to a non-linear theory investigated by Weinberg (1989)
and others. Ordinary linear quantum mechanics entails a further specialisation, for
which an analysis is presented by use of projective algebraic geometry. The linear
observables of ordinary quantum mechanics are functions for which the associated
canonical vector fields are Killing vectors. In the general non-linear theory the scalar
curvature of the complex manifold has the status of a preferred, geometrically
determined observable, and it is suggested that this observable should be linear the
Hamiltonian, with a relation of the form (H) =4 + uR, where A and g are constants.

To appear in Twistor Theory (S. A. Huggett, ed.) Marcel Dekker (1994).
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Quantum Measurement and Stochastic Differential Geometry
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Abstract. The state space of a quantum mechanical system can be represented by a
complex projective space, the space of rays in the associated Hilbert space. When
regarded as a real manifold the state space comes naturally equipped with a
Riemannian metric (the Fubini-Study metric) and a compatible symplectic structure.
The familiar operations of ordinary quantum mechanics can thus be systematically
reinterpreted in the language of differential geometry. It is especially interesting to
pose some of the problems of quantum measurement in this spirit, with a view
towards scrutinising the probabilistic assumptions that are brought in at various stages
in the analysis of quantum dynamics, particularly in connection with state vector
reduction. One of the most promising modern approaches to understanding reduction,
studied recently by a number of authors, involves the use of non-linear stochastic
dynamics to modify the ordinary linear Schrddinger evolution. Here we use methods
of stochastic differential geometry to give a systematic geometric formulation for
such stochastic models of state vector collapse. In this picture the conventional
Schrédinger evolution, which corresponds to a Killing trajectory of the Fubini-Study
metric, 1s replaced by a more general stochastic flow on the state manifold. In the
simplest example of such a flow, the volatility term in the stochastic differential
equation for the state trajectory is proportional to the gradient of the expectation of
the Hamiltonian. The conservation of energy is represented by the requirement that
the actual process followed by the expectation of the Hamiltonian, as the state
evolves, should be a martingale. This requirement implies the existence of a non-
linear term in the drift vector of the state process, which is always oriented opposite
the direction of increasing energy uncertainty. As a consequence the state vector
necessarily collapses to an energy eigenstate, and an elegant martingale argument can
be used to show that the probability of collapse to a given eigenstate, from any
particular initial state, is in fact given by precisely the usual quantum mechanical
probability.

Presented at the ESI conference on Spinors, Twistors, and Conformal Invariants,
September 1994, Vienna.
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The Geometry of Non-Intersecting Null Rays

The motivation of twistor theory is to replace spacetime points by light rays in
Minkowski space as the fundamental physical objects, and to understand positive fre-
quency as a holomorphic property of the spacetime fields. This requires one to complexify
the light cone in Minkowski space. The space of complex null rays in CM is under the stan-
dard Klein correspondence K precisely projective ambitwistor space - this is the product
space of PT with its dual; restricted to pairs of incident twistors, i.e.,

PA := {(Z% W)|Z°W, = 0}.

Thus in PT a complex null ray is a point on a projective 2-plane, CP;. The pont on the
2-plane determines a plane pencil which is the set of lines in the plane passing through the
given point; the elements of this pencil in PT are themnselves CPy’s and each corresponds
under K to a single element of a CPy in CM, whicli is the complex null ray.

The dimensionality of the space of complex null rays in CM, as a manifold, can be
seen in two ways; in purely twistorial or purely spacetime terms. It is worth checking that
these agree:

1) it is simply the (complex) dimension of PA - the 6 complex dimensional product
space is subject to one complex equation and so PA has complex dimension 5.

2) consider the space of all lines in a n-space - a generic element of this space can
be given by a) the intersection point of the line with a fixed (n — 1)-plane, and b) the
direction of the line - this is simply given by a point on a (n — 1)-sphere. This produces all
lines apart from a set of measure zero - those lines parallel to or lying in the fixed plane.
Thus the dimensionality of the space of lines in n-space is 2n — 2. When subject to the
Lorentzian null constraint a) is unchanged but in b) the sphere loses one dimension to
become a (n — 2)-sphere. Thus the space of null lines in an n-space is 2n — 3 dimensional -
these dimensions are complex if one begins with a n-complex dimensional space, and thus
we have agreement with the twistor answer for our case n = 4.

Consider now a pair of non-intersecting null rays. In P'T there are as we shall see
two natural conformally invariant classes of such pairs of rays. In CM there are again
two natural classes of pairs: the set of all parallel pairs, and its complement. However,
parallelism in CM is not conformally invariant.

In this article we give the interpretation in CM of the conformally invariant classes
i PT, and also an interpretation in PT of the notion of parallelism in CM.

Conformally Invariant Classes in PT
Let a connecting spring denote incident, and a connecting line denote non-incident
twistors; let (un)shaded circles denote (dual) twistors. Then a complex null ray can be

pictured in PT as,
X 24

T
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For a pair of null rays we have the following two conformally invariant classes.

Class 1 (measure 1)

X Wy V}

[ )
z x
\{"( /\
Firstly, note that there is no preferred point on either of the null rays. Also note that the

rays are indistinguishable, from the picture in P'T for class 1 shown. The interpretation

in CM is,
{a

1

P

Choose any point P on ly = (2%, W,). Then there exists an unique point ¢ on [; which
lies in the null cone of P, i.e. there exists an unique point ¢ null separated from P. In

PT one can see this as, QE‘P] RE=A

e
1\ -

e P

L"Pc*ﬁj é\(")_
N

L

\

The significance of the line R*#l in obtaining the point Q is clear (note also that this
line represents the unique point of intersection of the f-planes corresponding to W and
V). Similarly the line joining X and Z represents the unique point of intersection of the
corresponding a-planes - to see its significance in-obtainiug @ oue must complex conjugate

the diagrain above; X, N 2« -
' jontia

—

Ry T F

N\.__“v/ﬁ;/
L/,‘MN

Note M*is the dual of the plane containing X*, Z*, and N°.
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Class 2 (measure 0) 4
\ Yu
XO( N‘,( @’

1 A <

Property a): there exists a point P on {; such that its complex null cone contains all of .
‘This point is unique - under I it is the intersection of the planes W and Y (sec below),

> M (5]

Property b): any other point @ on {;, @ # P, has the property that its complex null
cone contains only one point, M say of {,, independent of (), which under K is the line of
intersection of X% and Z% (see below),

The situation is in fact symmetric with respect to interchange of /; and ;. The most
economical way to see this is to complex conjugate the diagram in PT above and to ask
the same questions of the pair {; and /; and to use the result already obtained,

If we now complex conjugate again then we see that a) and b) hold with /i, {5 interchanged:
for a) the point is represented by X1*Z# and for b) the point of intersection corresponds
under K to the intersection of the planes W, Yj.

Thus a pair for this class 2 could be regarded as ordered (by saying for example that
is the ray whose (upper indexed) twistor is connected by a spring to I, ), but this ordering
is reversed under complex conjugation.

If we define the relation R by: [; Rl; if and only if there exists a point on ! such that
its null cone contains all of {3; then this relation is both reflexive and symmetric, but fails
to be transitive - the negation of R also fails transitivity.
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Parallelism in CM

It is necessary here to consider the conformal compactification of CM, which we
denote CM*. Then two rays are parallel if and only if they meet scri (null infinity) in two
points P, @ lying on a common generator - here we shall ezclude the case that one of the
rays itself be a generator of scri, i.e. we exclude null rays at infinity. In PT this is to say
that the infinity twistor I*# is out of incidence with all of X%, Z%, Wy, Ya. In CM" the

picture 1s,

Suppose first that P, Q are distinct points on scri. In PT there are two cases. Let [
denote the point at infinity in CM?*. Then the rays are parallel if and only if the points
P, Q, I are pairwise null separated. The picture in PT is,

P
or T
. 1
7 ) p

Now for class 1 in P'T above there are two possibilities, /io(&

X ) N*
va X "
B

ould
In the left hand picture, I* lies in the B-plane defined by N, X, Z% and in the right
hand picture, I* lies in the a-plane defined by N®. For class 2 above there is in fact only
one possibility,

Q

The line 7*# must contain the point N* and not lie in either of the planes W,, Y,. Note
in particular that N is distinct from X, since otherwise 1*# is forced to lie in the plane
Wq or to contain X%, which gives a null ray at infinity.

Suppose now that P = Q. Then the rays intersect at a common point of sery, and
neither of classes 1 or 2 in PT described earlier apply - these two classes exclude all points
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of intersection in compactified CM. If two complex null rays intersect at a point P of cm!
then this point is unique. In PT there are three cases, and the situation for parallel rays
is shown by the line 1%,

/I /! /E

!
e P

bk b

Thanks especially to Franz Muller for hospitality at ILH.E.S., to S.A. Huggett for
suggesting this for TN, and to R.P. for helpful comments.

Conference Proceedings: Twistor Theory

edited by S.Huggett

The proceedings of the 1993 Twistor Conference, edited by S.Huggett, are being pub-
lished as Volume 169 of the Marcel Dekker, Inc. Series of Pure and Applied Mathematics

books.
The contents are as follows:

1.Thomas’s D-Calculus, Parabolic Invariant Theory, and Conformal Invariants.
T.N.Bailey

2. Cohomogeneity-One Kahler Metrics.
A.S.Dancer and I.A.B.Strachan

3. Another Integral Transform in Twistor Theory.
M.Eastwood

4. Twistors and Spin 3/2 Potentials in Quantum Gravity.
G.Esposito and G.Pollifrone

5. Analytic Cohomology of Blown-Up Twistor Spaces.
R.Horan

6. Geometric Aspects of Quantum Mechanics.
L.P.Hughston

7. Anti-Self-Dual Riemannian 4-Manifolds.
C.LeBrun

(continued on page }t7 )
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Progress with the massive propagator in twistor diagrams

In TN37 I outlined some new ideas on defining twistor diagrams for the massive
Feynman propagator. The first key idea was that of replacing the original (1990)
conjecture

Some formulas were given which, it was stated, show that the new version must
yield a solution of the inhomogeneous Klein-Gordon equation. But actually it is
also necessary that a particular contour choice is made, namely a double period
contour. At first sight one might think that introducing two boundaries, then
taking two periods, will just get us back to where we began. But in fact we get
back to something almost the same, but differing by lacking just the unwanted
terms which arise (as shown by S.T.S.) in the originally conjectured integrals. But
why should this be? A further observation helps give some intuitive feel, viz. that:

—kd LT = =
k;ﬂ(w -

Roughly, this means that making the replacement is like performing two

-~

operations of (vk}k ) , which will transform log(W.Z / k) into 1/glog3(W.Z/k).
On taking the double period, we regain log(W.Z/k), so that the ‘wanted’ term is left
intact. However the ‘unwanted’ terms vanish under this sequence of operations.
So the replacement acts almost like a projection operator for the wanted terms.
One must say ‘almost’ because 1/ log2 (W.Z / k) is transformed not to itself but to

1/ log2 (W.Z / k) — 1/3 2. We return to this point later.

This rough idea can be made exact. In doing so we are greatly helped by an
observation about integrals where a boundary on W.Z = k goes with an integrand
of form log(W.Z / k). Hitherto, our methods (as in Lewis O’Donald’s work) have
required the expansion of the integrand as a power series in (W.Z — k). In the
present case these methods would lead to the summation of a formidable triple
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power series. However it turns out that it’s quite unnecessary actually to do such
a summation. Recall first that

WA N ~V\Z

has the property of vanishing when W.Z=k. Analogously, the spinor integral
A
(w.c—k) (% o — k)" Al A Atk

(w.o— k)*

X.A ;K, w.e sk

vanishes when a.c=k; and it can be shown (by using power series) that this feature
also extends to the more general

) () peare (%)
w.A > I (w' 2 — ,C)L

w-C ok
where p and q are any complex numbers. It follows also that

¢ ey (20" T (%)) i e

x.o = k, ! lwx—p)t Al
woe =k,

has the property of vanishing when u a.c = kjkg, for eachm, n.

Moreover, the value of this integral must be

[=(5E)])

(Mff\,-*\)!

(Proof: double induction on m and n, using repeated integration with respect to kj,

ko = starting from the known result for m=n=0). Now write
(o2 - S P )"
& ) ) 2 — Wl
n=9o L AJEN
and by summing the resulting double series we deduce
!
("‘"—)P (ﬁSY (‘7‘,;‘—\ As
(* ) = < ke = J .
VALY —_—

P-4 (s-D(s-1)

——
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By inserting a factor (2i sinns)? into the integrand we obtain the result of the
double period contour. By straightfoward application and extension of this formula
we can obtain all the results we need. See S.T.S’s article in this TN for a
statement of the conclusion, using the idea outlined above in a different way.

The same method (‘integration with respect to parameters’) can be used to
simplify the calculations for the second of the key ideas introduced in TN37, that
of replacing the (—n)-lines by ‘ladders’ with n rungs of the form

The overall picture is now that this line of development is firmly established and
justified, thus taking us much closer to a scheme in which mass is generated by
interaction with a Higgs field; i.e. the nth twistor diagram, with a ladder of n rungs,
corresponds to n successive interaction with Higgs fields. However a new problem,

at first overlooked, prevents us claiming that this is achieved. This is the 1/3 w2
term that arises when the 1/ log2 term is transformed to /2 log2 — 1/3 2, Thisis

not fatal to the general programme, because we know that that the twistor
diagrams so far arrived at are not actually quite of the form we want. They do not
project out spin eigenstates, and they do not quite fit into the correct ‘skeleton’
pattern as required by my general dogma for the correspondence of twistor and
Feynman diagrams. There is a reason for supposing that when the diagrams are

yet again modified to meet these criteria, the 1/3 w2 discrepancy will be eliminated.

Meanwhile there is no problem with getting the ‘on-shell’ (Hankel) functions from
this general scheme, thus completing and superseding the formulation of my 1985
paper. In view of this I suggest that the two-twistor ‘functions’ of form

F2t) g ) £ 2 —p)

should now be considered as primitive elements of the theory, corresponding to the
measurement of a single free massive field rather than as two free massless fields,
and should have a new cohomological interpretation. Andrew Hodges
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Some Calculational Results For The Massive Propa-
gator In Twistor Diagrams

In [Hodges 91| a Barnes integral was derived for the massive scalar time-
like propagator composed with massless in and out fields. This integral is

1.,, (1 —3s)[(—s) _
. _ 2 — 2 T\2s 2 _ 2y\s ld 1

Flmi (p = @) = m? [ ()" = (m*(p— ) Mds (1)
which we refer to as the IFeynman function. The variable m is the mass of the
scalar propagator, p and ¢ are points in CM ¥ defining the elementary states
used for the in and out fields. The L path of integration is

L

The poles of the integrand are marked with Xs. The path of integration
encloses the double pole at zero and the triple poles at all the positive integers
(not the single poles at all the negative integers), so the Feynman function
can be expressed as a sum of residues. We can write down a formula for the
residue at the n'* pole

2T WY oy 5 1020t + ) tog L)

1. . w2
+518%m) + ()] + ) )

where

__ (=g
" drn((n - 1)1)2

1 o QR ot poams I-n
n):=——+2 -+
Aln) ;t rzzlr(r n) r_er(T-l-l—n)
1 2 w2
o(n) = — +
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The central idea in [Hodges 91] was to regard this sum of residues as a
power series in m? and that a twistor diagram should correspond to the co-
efficient of each power. The twistor diagram conjectured to correspond to
the residue at n was

n
A B A B
The bent lines labelled with n st{md for terms like
v
(WY )+t

The twistors A,B and C,D are related to the points p and ¢ by the usual
Klein correspondence. Different inhomogeneous parameters are used for the
four boundary lines, going anticlockwise from the top: m,,k;,mq, k. This
enables us to apply differential operators to the lines individually.

Until recently the evaluation of this diagram would have been extremely
laborious. However a calculational ‘shortcut’ has been noticed by Hodges.
We can begin with a diagram evaluated in [Hodges 85]

C D C D

W Y

-n -n
X Z

and integrate twice with respect to m; to turn it into the top half of our
required diagram. This technique is limited by the ambiguity in the constants
of integration, but for diagrams of this type Hodges has identified a condition
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which specifies the constants uniquely [Hodges 94b]. The bottom half of the
diagram is completed by usual methods and yields

Qr-1 1 mymy§l mymo§) n?
A DR (2 8 Ty ) T AT )~
1
— A} +n((n ~ DY’B(n) } + D(n) (3)
where
A(n) =~ L 2 200)
T n T(n)
n-—-2 1 1 1 1
) = L G P = ¥ DG —nt Dt 1 s v /)
1 1
TaG Al sy /el
B __2["(3 +1) _ 2" (n — s)
f(n,s) = P(S + 1) I‘(n —_ S)
n—2 Qnr-! Qmym, il 1
Dln) = ;0 T ¥ DIT(n o2 ks ' (s +1)(s =n+1)"
and
=17 (ABEh)
CDh

We make the identifications ’

my =my = ﬁ

kl = k2 =e "

1= —%yz

_%A(n) +n((n - 1))?B(n) = %[ﬂQ(n) + o(n)]



41

Thus the answer for the twistor diagram (3) agrees with the answer for
the residue (2) apart from two terms. The co-efficients of 7* are different and
the answer for the diagram has the extra terms, D(n), which have become
known as tail terms. These are the source of the extra term in the n = 2
diagram mentioned in [Hodges 94a].

The scheme for obtaining diagrams without the tail terms is outlined in
[Hodges 94a]. We replace the twistor diagram above with

C D C D

n
A B A B

where the vertical bent lines are shorthand for

We calculate this diagram by integrating the previous diagram with respect
to k; and k; and then taking the double period contour. The answer is

ity 1., mmQ mymaQ. 7w
W{ 5 log (_W) + A(n) log(— ik Y
— ~A(n) +n((n ~ D)) (1)

The tail terms have been successfully eliminated but the 72 term has changed
to —m?/2. This happened as a result of taking the extra double period
[Hodges 94b]. Thus the discrepancy between the answer for the diagram (4)
and the residue (2) is 572/6.
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